
I LL(tj TechnicaliReport'
CMUISEI-88-TR-7
ESD-TR-88-008

C) July 1988

,,- - , r ge-Meon University

r, - Software Engineering Institute

I

The Project Management
Experiment

_ Peter H. Feller
Roger Smeaton

May 1988

DTIO
ELECfl
JUL2 8

-D D
Xx

DLST UTION TATEMT A

* ,, NvApproved tor teleoa4

i Ha -

- :: × tlXn

x x

x x

,* x- z z. ..,, , .-."-.- -,--- ,, .--.-: "... .,-.v .,~-.. .-..-. -

Technical Report
CMU/SEI-88-TR-7

ESD-TR-88-008

July 1988

SThe Project Management Experiment

EvauatonPeter H. Feller
Evaluation of Environments Project

I , Roger Smeaton
K) Resident Affiliate

- Naval Ocean Systems Center

,
4 0

I '

p I
I I* ~-

A-1

Distribution unlimited.

.:5
Software Engineering Institute

- 'V

Carnegie Mellon University
., -.

Pittsburgh, Pennsylvania 15213

0.

% *=~ " P * a - - ' a a a ~

%

0

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. it is published in the interest of scientific and technical information

exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

,... Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1988 Carnegie Mellon University
This document is available through the Defense Technicaf Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contr~actors, and other U.S

* Government agency person"e and their contractors. To obtain a copy, please contact OTIC directly: Defense Technical
Information Centor, Attn: FDRA. Cameron Station. Alexandria, VA 2230446145.

Copies of this document are also available through the National Technical Information Services. For information on
- - ordering, please contact NTIS cirectly: National Technical Information Services, U.S. Department of Commerce.

Springfield, VA 22161.
*ISTAR is a trademnark of Imperial Software Technology, LU,, London. Rational and R 1000 are registered trademarks of

Rational, Rational Environment is a trademark of Rational. MacProject and Apple are trademarks of Apple Computer, Inc
* Macintosh is a trademark of Macintosh Laboratories. Inc., and is licensed to Apple Computer, Inc.

Use of any other fradema&-- in this report is not intended in any way to infringe on the rights of the trademark holder

•. %

ej' A .. N A 6N,

F-

Table of Contents

1. Introduction

* 2. A Review of the Evaluation Methodology 3

3. Refinement of the Original EAE Methodology 5
3.1. Level of Detail 5

r .. , 3.2. Format of Experiment Information 6

F, 4. Scope of Project Management 9

- 5. Identification of Key Project Management (PM) Activities 11
5.1. Categories of Project Management Activities 11
5.2. Refinement of Project Management Activities 11

5.2.1. Project Plan Management (PPM) 12
5.2.2. Plan Instantlation (PI) 15

p, 5.2.3. Project Execution (PX) 17
5.2.4. Product Management (PDM) 18

5.3. Activity Codes 18
6. Definition of Evaluative Criteria and Questions 19

6.1. Evaluative Criteria 19
6.2. Evaluative Questions 20

6.2.1. Functionality 21
6.2.2. Performance 24
6.2.3. User Interface 26

, 6.2.4. System Interface 28
6.3. Question Codes 28

7. Phase 3: The Generic PM Experiment 29
7.1. The Context 29
7.2. The Scenario 31
7.3. The Experiment 41

7.3.1. The Experiment Setup 41

7.3.2. The Customers 42
7.3.3. The Manager for Product Maintenance 43
7.3.4. The System Analyst 45
7.3.5. Team 1 46
7.3.6. Team 2 47

S7.3.7. Team 3 47

7.3.8. Documentation Group 48
.7.3.9. /A Group 48

0",. .8. Hints to the Experimenter 51

8.1. Process of Experiment Development 51
.8.2. Incomplete Functionality Coverage 52

CMU/SEI-88-TR-7 -

[,V

8.2.1. Project Plan Management 52
8.2.2. Plan Instantiation 52
8.2.3. Project Execution 52
8.2.4. Product Management 53

9. Summary 55

10. References 57

Acknowledgements 59

Appendices 61

Appendix A. Functionality Checklist 63

Appendix B. Cross-Reference Table for Execution of Experiment 65

Appendix C. Cross-Reference Summary Matrix 67

Appendix D. Performance Questions Within Experiment Steps 69

0 Appendix E. Activities and Plans (Global View) 71

Appendix F. An Illustration of Documenting an Instance of the PM 73
Experiment

CMU/SEI-88-TR-7

0

NZL

List of Figures

Figure 2-1: Phases and Products in the Evaluation Methodology 4
Figure 7-1: Software System Structure 29
Figure 7-2: Organizational Structure 30
Figure 7-3: Error Reports and Respective Actions 31
Figure 7-4: Initial Activities 32
Figure 7-5: Initial Global Plan 33
Figure 7-6: T1 Plan 34

. Figure 7-7: Modifications to Ti Plan 35
Figure 7-8: Integration Plan 36

_ Figure 7-9: Version History of UI Subsystem 38
Figure 7-10: Version History of CLI 39
Figure 7-11: Version History of SM 39
Figure 7-12: Customer Deliverable 40

Z , .

CI

Ag ' •qj

:oV .

Iw

CMU/SEI-88-TR-7 Iii

I

"-p. -
,'-._.=..,. . -. ,,,..........=.........J...,....- _** * .

The Project Management Experiment
Abstract. This report covers a project management (PM) experiment, one of six ex-
periments that examine different functional areas of Ada programming environments.
The PM experiment was designed as part of the Evaluation of Ada Environments Proj-
ect. This report describes the environment-independent part of the experiment: the

? activities covering the functional area, the evaluation criteria, and an experiment
scenario to be performed on different environments. The experiment as it stands has

|, been validated through internal and external review and through application to several
environments that support project management. ., , ', '*,

1. Introduction
This report describes the design of a project management (PM) experiment that provides full
coverage of project management activities. This experiment augments the set of experiments
defined in the methodology for evaluation of Ada environments developed at the SEI [2]. In this
methodology an experiment consists of two parts: an environment-independent description of a
development scenario to be performed and evaluative criteria and questions, and the application
of the experiment to different environments and analysis of the results.

- . The experiment design concentrates on the environment-independent part of the PM experiment.
The design process has two steps, each of which has three components:

1. Designing the environment-independent part of the experiment, which involves:

* a. identifying and classifying project management activities

S..* b. defining evaluation criteria and establishing evaluative questions

c. designing a generic experiment that is independent of a particular environ-
ment

2. Validating the design of the PM experiment, which involves:

a. conducting internal and external reviews of the experiment design

b. instantiating the experiment on several environments

c. evaluating two environments based on the methodology including the proj-
ect management experiment

The experiment design has been completed and the experiment has been validated both through
review and application to environments. In addition to the original three environments evaluated
by the SEI methodology, whose results are documented in (4], we have evaluated two environ-
ments (ISTAR from Imperial Software Technology, Ltd., and the R1000 Ada environment from
Rational) with the extended set of experiments. The results of these evaluations are being
published in 1988 as separate SEI technical reports. Experiences of using the SEI methodology
are discussed in [5]. The insights gained in terms of requirements on integated project support
environments as a result of applying the PM experiment to several environments is documented
in [1].

CMU/SEI-88-TR-7

...-.-.. . .

This report first presents a brief review of the evaluation methodology (see Section 2). Section
3 describes the differences between the design and presentation of the generic PM experiment
described in this report and the experiments discussed in the original report [41. Section 4
defines the scope of project management covered by this PM experiment. The subsequent three
sections (Sections 5-7) present the three components of the environment-independent exper-
iment description. This is followed by instructions in Section 8 for the application of the exper-
iment to an environment, based on our experience in executing the experiment in. The appen-
dices contain support material for the application of the experiment and the recording and anal-
ysis of the results. Also included is a sample evaluation illustrating the use of the support mate-
rial.

This report also satisfies the first two components of the validation part of the experiment in that
the report has been revised based on reviewer feedback and on feedback from instantiating the
experiment by a person who is not one of the two designers of the experiment. A full report of the
evaluation of two environments (the Rational Environment from Rational and ISTAR from Imperial
Software Technology, Ltd.), including the results of applying the PM experiment, is due the first
quarter of 1988.

2 CMU/SEI-88-TR-7

.......... ,

2. A Review of the Evaluation Methodology
p For a more detailed discussion of the evaluation methodology, see Chapter 2 of [4], 12], [3], or [6).

The methodology developed to evaluate programming support environments is based on the
following guidelines:

* Focus on user activities.

* Be independent of any actual environment.

* Be experimentally based (objective and repeatable).

* Emphasize primary functionality.

* Be evolutionary.

o Be extensible.

The evaluation methodology consists of six dtscrete phases:

1. Identify and classify software development activities.

2. Establish evaluative criteria.

3. Develop a generic experiment.

4. Develop an environment-specific experiment.

5. Execute the environment-specific experiment.

S6. Analyze the results.

The first three phases are independent of any particular environment and are performed once for
each functionat area of programming support environments (design and coding, testing and de-
bugging, configuration management, system management, and technical project management).

I The I three phases cf the methodolcgy are specific to the environment being evaluated and
are performed once for each environment evaluated.

Figure 2-1 illustrates the relationship between the evaluation methodology phases. In Phase 1,
underlying activities common to software engineering (the "what" of software development, not
the "how") are enumerated. The criteria established in Phase 2 fall into four broad categories:
functionality, user interface, system interface, and performance. Some categories will inevitably

/" overlap, for example, functionality criteria and user interface criteria. The dominant category,
functionality, is revealed mainly by checklists and descriptions of how activities are carried out on
a particular environment. Note that in this PM experiment, the activities in a checklist are not
given priorities or weights. We feel that judging which functions are more important (i.e., which
should be weighted more heavily) and which are less important can only be done by the ultimate

-' user of the results, not by the authors or the experimenter.

The results of Phases 1 and 2 are used to develop the generic experiment. The experiment is
generic in the sense that it does not use specific tools in specific environments, but refers to
generic tasks that must be performed. It must be detailed enough to allow the experimenter to
instantiate it on a particular environment, but general enough not to imply a specific set of tools.

CMU/SEI-88-TR-7 3

-..........

Phase I Phase 6

Environment independent Environment dependent

Figure 2-1 : Phases and Products in the Evaluation Methodology

The environment-dependent part of the methodology (Phases 4, 5, and 6) involves instantiating

the generic experiment on a particular environment, executing the experiment, and analyzing the
results.

4 CMU/SEI-88-TR-7

k*k*

3. Rafinement of the Original EAE Methodology
This Section summarizes the differences between the experiment descriptions in this report and
those in the original Evaluation of Ada Environment (EAE) report [4].

In the original report, the methodology was developed and experiments were defined in five
areas: design and coding, testing and debugging, configuration management, system manage-
ment, and technical project management.' The purpose of the task described in this milestone
report is to develop a project management experiment for the Evaluation of Ada Environment's
methodology that provides full coverage of project management activities. Since this task was

done after the methodology was applied to environments, we have attempted to improve the
design of the experiment and the presentation of the material.

3.1. Level of Detail

The first category of differences is in the level of detail and the degree of environment-
independence regarding activities, questions, and experiment steps. In the original report, activi-
ties, questions, and experiment steps were presented at a level of detail that was quite close to
the set of primitive operations provided by the environments, which were evaluated in the same
report. This level of detail raised some concerns because carrying out the experiment and an-
swering the questions created a large volume of information. In the project management (PM)
experiment, the volume of information would be compounded because the PM experiment covers
a wider range of facilities than does the original set of experiments. Furthermore, the activities
and experiment steps in the original report were, to a certain extent, environment-dependent
because the level of detail was so close to the operations provided by the initial set of environ-
ments that were evaluated. As a result, Phase 6 of the methodology-the analysis of the exper-
iment results-was more difficult to complete. The person performing the analysis had to ab-
stract information from the detailed "raw result" data, and draw appropriate conclusions at a
higher level of abstraction about how well the operations supported the user's tasks. Providing
good guidance to the experimenter was difficult.

We dealt with these concerns by identifying activities and designing an experiment at a higher
level of abstraction that more closely represents the tasks a user of the environmernt is trying to
accomplish rather than the operations that may be provided by particular environments. For
example, instead of specifying the activity "change ownership of files and directories," our
scenario specifies only that a member of the development team leaves the team; the operations
that are actually carried out by the experimenter to accommodate this change will depend on the
environment being evaluated. From the activities, we built scenarios of situations that could
occur in a real project; the scenarios are less dependent on any environment and, at the same
time, reduce the volume of information collected by reducing the amount of detail. As a result,
the reader gets a clearer overall impression of the capability of an environment that supports the
tasks of a developer or manager.

1A sixth experiment-a compiler benchmark suite known as the Ada Compiler Evaluation Capability-was contributed
by the Institute for Defense Analysis

CMU/SEI-88-TR-7

Our approach puts more responsibility in the hands of the person carrying out the experiment on
a particular environment. The experimenter has considerable freedom in mapping activities and
experiment steps onto operations in the environment, and sometimes has several alternatives for
accomplishing the task. For example, in a given environment, specialized support may be avail-
able for submitting time sheets, reporting progress, and assigning tasks; or, the same activities
may be accomplished by electronic mail. This may introduce more subjectivity into the evaluation
because the experimenter does not have as much guidance in instantiating the generic exper-
iment. Keep in mind, however, that the intent of the experiment is to determine the range and
appropriateness of the facilities available in the environment. We expect the experimenter to
describe the functional and architectural model of the environment, as well as describe how
activities and experiment steps are mapped onto environment operations.

Another point worth noting is the secondary importance of performance metrics in the evaluation
of environments. Performance has two aspects: efficiency, which considers both time and space
requirements, and responsiveness, the appropriateness of the environment's response time to
the complexity of an activity or command. In the PM experiment especially, we believe that
measuring efficiency (i.e., milliseconds elapsed or bytes consumed) does not reveal much about
the usefulness of the facilities in an environment. On the other hand, responsiveness is relevant
and useful information to collect. Thus, approximate cost in time and space should be measured,
but the experiment does not require the high accuracy and repeated measurements necessary to
produce valid data points for the cost of language constructs.

3.2. Format of Experiment Information
i he second category of differences between the original report and this report is in the presen-
tation of the experiment information. We deviate from the format of the original EAE report in
Phases 3, 4, and 5.

In Phase 3, there are two differences: First, the PM experiment must capture the activities of
many people working simultaneously. Therefore, we describe the generic PM experiment by first
laying out the context and the scenario and then describing each role as a time-ordered set of
experiment steps. Second, the result of step 2 of Phase 3-associating questions with exper-
iment stes-is not presented in tabular form. Instead, we list relevant questions and activities on
separate lines of text immediately after each experiment step description.

The changes to Phases 4 and 5 affect how the experimenter documents the results of instan-
tiating and running the experiment on a particular environment. In Phase 4, the experimenter
describes the functional and architectural model of the environment and its ability to capture the
experiment scenario, and describes the sequence of operations that must be carried out to ac-
complish the activities in an experiment step. The experimenter should work out the sequence of
operations necessary to produce the actions called for in the experiment, but not necessarily
develop a command script or keystroke file. We believe that the cost of developing such a script
or file for the complete experiment for the sake of repeatability and precise performance
measurements of a few operations does not warrant the effort, especially for highly interactive

6 CMU/SEI-88-TR-7

• ,..'. .-;.: .".- ,-"- ..'- ". .- "..' -:- ". -" < _'. _ .'-:,. .-; " " , -., ;. -' ."-,' ,,',". ;' '-'-, ,-3;,"",;, " " -' '" "

environments. Instead, the command sequence--the set of operations for each step -s vali-
dated by testing it manually from the keyboard and screen. With respect to performance, partic-
ularly the measurement of time, the experimenter should consider both the elapsed time to ex-
ecute an operation and the time required to enter the information into the environment. Meas-
uring both components will give a more meaningful metric of the cost of using a tool, since the
cost of entering information through an awkward forms system, for example, may outweigh the
cost of actually executing th" operation. Finally, the experimenter completes the functionality
checklist (see Appendix A).

Phase 5 in the PM experiment is primarily gathering performance data and answering questions.
To document the results of this phase, we suggest that the answers to the questions be
presented in the same order in which they were defined in step 2 of Phase 2, i.e., organized

j according to evaluation criteria. This makes the information more readable and understandable
to both the reader of the report and the person carrying out Phase 6.

Phase 6 is essentially the analysis of results. For those activities that are supported by the
-. -environment, the experimenter summarizes the differences and similarities in the functional

model of the generic experiment and the target environment and answers the question: How well
are various activities from the generic experiments supported by the particular environment? If
the experiment has been instantiated on more than one environment, a cross-environment com-

- . parison is also a product of Phase 6.

* jThe functionality checklist to be used in Phase 4 (included here as environment-independent
material), cross-reference tables that help organize the results of Phase 5, a global view of the

experiment's scenario, and a description of MacProject to illustrate the architecture and function-
ality of a project management tool, are included as appendices.

'.7

.

" "CMU/SEI-88-TR-7 7'

6p "'

I
9.
9...
s.f

4-r

.4,

N..

~ 5-~

~ 5~~

/.
4%~
4r

4..'

0

'is
'it-4-.

445
9.,
.4.

Sb).

W-

A-

.5-.

5~~

i-b

JAW

'p.

A-.
-4-,

5%~

-V.
A-

0

4.

.9.

S

4--

S
'A-

8 CMUISEI-88-TR-7
Ar.

5'

I

4. Scope of Project Management
The generic project management experiment exercises the facilities for project management and
product management of an Integrated Project Support Environment (IPSE).

., The purpose of this experiment is to provide a comprehensive evaluation of an environment's
project management facilities: project planning, monitoring, and control; instantiation of plans in

* Ithe development facilities; management of development in terms of coordination and communi-
cation; and management of software products.

In the context of this experiment, the term "project management" covers activities of project man-
agers (i.e., project planning and control) as well as management support for activities of devel-
opers. Because the coverage of project management activities is comprehensive, we do not
expect any environment on the market to have all of the facilities probed for by this experiment. It
will probably be necessary, therefore, for the experimenter to carry out a subset of the exper-
iment. Section 8 includes hints to the experimenter about how to deal with incomplete coverage
of the experiment.

The PM experiment is larger than the other experiments (design and coding, testing and debug-

ging, configuration management, and system management). We expect that it will require two to
three times the amount of effort on the part of the experimenter. Initial experience suggests that
four to six man-months are required to carry out the full PM experiment.

The PM experiment simulates a project for maintaining a released software system. The "project"
starts with a set of error reports from customers who are using the current release of the system.
The error reports are analyzed, and a new release correcting many of the reported problems is

- -" planned. Project plans are drawn up by the project manager, together with the project leaders.
The plans are approved and the project is carried out by several teams, as well as a documen-

" Itation group and a quality assurance group. During the life of the project, its progress is

monitored. Various changes (e.g., in personnel) are necessary to accommodate the execution of
the project. Finally, the new release is made available for distribution to the affected customers.

S."The challenging part of the PM experiment is to investigate the activities of many people in
different roles who work on a project concurrently. For that purpose, we have developed a

.I. project scenario, which is described in Section 7.2. The scenario gives an impression of the
whole experiment and the interplay of different actor's roles. This is followed by the actual exper-
iment, organized by role, and the experiment steps within each role organized chronologically.

We recognize that doing full planning for this small example might be overkill; nevertheless, we
, ask the experimenter to apply all the planning tools which the environment provides, even if the

amount of work is small. We believe this is a less serious problem than the alternatives, which
are to scale up the organization, plan, and scenario accordingly; or, to allow the experimenter to
omit those steps or execute the steps informally, using pencil-and-paper methods. We have,
however, tried to give the experimenter leeway to bypass some of the project mechanisms and to
allow a variety of team organizations in the scenario.

CMU/SEI-88-TR-7 9
-I

S.-

~w. - - fin rnn fl.nnnn .,-~ -~. -. --

0
4-

44

4-

4/

4~~~~

#4

4'

* 4,

4/
-4

a'.

4.4~

0

-4-

'a.

'a.

~44a

4~.

S

'4

0

S
1.

10 CMU/SEI-88-TR-7

0

-4

. d~ ~' *~ ~ '' . , 44

5. Identification of Key Project Management (PM)
Activities

In this section, activities within the specific area under investigation--in this case, project
management-are identified, categorized, and refined. In this report, we do not classify the
activities into primary and secondary functions. We are delaying the assignment of priorities until

I after we have applied the PM experiment to two environments.

5.1. Categories of Project Management Activities
Project management activities fall into four categories:

1. Project Plan Management represents the activities of a project manager during

project planning, monitoring, and control.

2. Plan Instantation represents the activities involved in reflecting project plans in
the development support facilities of the environment, such that the project can be
executed according to plan and progress can be reported to the project plan man-
agement facility.

3. Project Execution represents the activities of project members as they carry out
the project simultaneously in a coordinated manner. The activities identified here
relate to managing the development (task management, communication, coordina-
tion, etc.). Additional activities (e.g., design and coding) are included in the tasks of
some members, but these are covered by other experiments in the evaluation
methodology.

4. Product Management represents activities related to managing information and
deliverables throughout the lifetime of the project.

In general, product management is viewed as a major category of activities in soft-
ware engineering, separate from project management. It includes product release
control, change management, quality assurance, and configuration management
(CM). Since release control and configuration management are already in place in
the CM experiment, we decided to include the remaining product management acti-
vities as one of the four project management subareas at this time.

5.2. Refinement of Project Management Activities
For each major category of project management activities, we defined a set of specific user
activities. We then arranged those activities into groups. Hints about how to instantiate an
activity on a particular environment are shown in italics.

'po

I.

b.

CMU/SEI-88-TR-7 11

p

5.2.1. Project Plan Management (PPM)
Project Plan Management activities are organized into three groups:

1. Project Plan Creation represents activities related to the creation of initial plans.
Once created, these plans provide input for setting up the development support
facilities described in Plan Instantiation.

2. Project Monitoring represents activities related to monitoring and controlling the
progress of projects in terms of the plans.

3. Project Plan Revision deals with adjustments to plans to reflect changes in the
project. Such changes can range from regrouping teams to restructuring the prod-
uct or the project.

Activities
1. Project Plan Creation

a. Tailor planning support facilities.
This incdudes: setting up the project calendar and specifying report formats,
task description templates, and other project-specific templates; setting up
default values for planning parameters, such as types of resources and their
cost, and other cost estimation parameters as required by the cost estima-
tion models.

b. To test for traceability of project management documents, establish a rela-
tionship between the technical project objectives document (which is the
basis for project planning) and the products, such as schedules.

c. Develop a work breakdown structure (WBS) and work packages, including
dependencies.

d. Estimate the cost of work packages.
This will be the raw data for the project cost estimation; includes pages of
documentation, lines of code, man-weeks, and duration.

e. Develop a project schedule.
Includes critical path analysis and generating schedule report.

f. Assign resources.
Includes assignment of people, equipment, and other resources; handling
personal time; resource utilization based on plan.

g. Estimate the project cost.
Run cost-estimation model(s). Functionality may include: compensation for

* communication overhead; handling man-months (time it takes to do a task)
versus head count (actual number of people it takes); handling cost in-
creases; cost assignment at different levels of detail.

h. Merge team/group plans into global project plan.
How well does the project planning facility support plan development in very
large projects. i.e., plan development by team managers that feeds into plan

'p .development for the overall project?

iL Generate a complete plan document.
This is the document to be used as a baseline for carrying out the project.

2. Project Monitoring

* This set of activities represents project monitoring as it is done in terms of project
plan management. ft is assumed that information regarding progress is passed to

12 CMU/SEI-88-TR-7

S%

*>

the plan management facility in some form (addressed in Section 5.2.2, Plan
Instantlation). Here the issues to be addressed are support for recording actual
figures representing project progress, and support for trend analysis which com-
pares actuals to plan figures.

a. Record and generate reports on actual progress data.
Determine what progress information can be recorded and tracked throughI" the project planning facility. Includes schedule-related, resource-related,
and cost-related information, and possibly comments/explanations about
irregularities.

b. Analyze progress against schedule.

c. Analyze actual cost against estimates.

N.; d. Analyze resource utilization.
Answer questions such as: Are the computers overloaded? Is disk space
usage growing according to plan? May include reassigning people to un-

p" : scheduled tasks, iLe, tracking ratio of activities that are not project-related.

e. Generate summary reports.
For example, trend analysis reports and periodic progress reports.

3. Project Plan Revision

This list of activities is not necessarily complete, but it does show the situations that
commonly occur during the life of a project. There are two classes of events that
cause plans to be changed: updates to reflect actual change (e.g., people leaving
or equipment outage), and adjustments to keep a project on target according to
plan. This requires what-if analysis to determine the effects of various alternative
situations.9 a. Baseline the plans.

Keep a record of all versions of plans.
b. Perform what-if analysis.

I - -.

A generic activity; instances of particular planning activities with what-if
analysis occur throughout the remainder of this list.

c. Handle schedule slippages by making schedule adjustments.

d. Handle adjustments in working hours.
For example, have team members work 48 hours a week instead of 40.

e. Cope with personnel changes.
Reassignments, general tum-over, vacation, illness.

f. Handle changes in WBS/task structure.
.,.- New tasks being introduced, tasks being merged.

C:: g. Handle changes to the project structure.
,.'..'.-.Splitting and merging subprojects.

h. Handle changes in product deliverables.
Splitting and merging subsystems, changes in existing deliverables. Implies
cost changes.

i. Adjust cost parameters based on actual data.
:- Personnel cost, computer usage.

j. Handle computing resource changes.

Computer outage, addition of new equipment.

CMU/SEI-88-TR-7 13

J.

%
22"" '" '< "',;"".. "+;'--,," .'L'-" +. '.-,-:;" "" '", ', '."" "" ",'"'"''''' .-.r:<' ''"

I -o

or

k. Generate reports highlighting changes to plan.

14
CMU/SEI-88-TR-7

a-I

5.2.2. Plan Instantlation (Pi)
This set of activities deals with instantiating a plan in the development environment so that the
project can be executed according to plan. The activities are divided into three groups:

1. Project Installation deals with setting up the development support facilities to
reflect the project plans.

2. Reporting Mechanism Installation consists of instrumenting the development
support facilities for reporting relevant information back to the plan management
facilities.

3. Reflecting Modifications to Plan is essential to cope with changes in an ongoing
project.

In a fully integrated environment, plan installation should be automated, and installation of report-
ing mechanisms should be limited to specifying when and how much information is reported. For
other environments, such support will be lacking, and installation will require a lot of manual work
by the user.

Activities

1. Project Installation

. a. Set up product structure.
Set up place holders for expected products; set up default ownership and
access rights; set up necessary information to reflect standards and
formats.

b. Set up team structure.Reflect team hierarchy of plans; set up access control; assign equipment;set up work areas; set up user profiles.

c. Set up task structure.
Reflect work packages and their dependencies; set up mechanisms for ac-
tivating tasks based on schedule and dependencies; set up mechanisms to
tie together products, people, and tasks.

2. Reporting Mechanism Installation
- This set of activities represents setting up reporting mechanisms to periodically re-

port information to the project planning facilities. Progress reporting to the planning
system should be happening in several areas: accounting information, task com-
pletion and product delivery, resource consumption to anticipate bottlenecks, etc.

a. Provisions 'or reporting task completion and delivered products.
To validate estimates, document size may be relevant as well as actual time
to complete the task.

b. Provisions for reporting accounting information to match up to budgets.
Personnel time, resource usage.

c. Provisions for reporting statistical data.
For example, compilation error statistics, which some managers use to dis-
cover problem spots.

*. 3. Reflecting Modifications to Plan

This set of activities should uncover in more detail how well the development sup-
port facilities cover concepts desirable from the viewpoint of project plan manage-

CMU/SEI-88-TR-7 15

* • • .- . ° " - " "- % " " " -- " " % " -. "% ° % "... % ". % , " **N % . "-*** *,%1 *.1*' t

i.

ment, as well as how flexible the chosen support mechanisms are when making
changes to the project. The following list of items has a close correlation to the list
in Project Planning above.

a. Reassignment of people.

Should raise issues of access control, ownership, etc.

b. Changes in task structure and schedule.

c. Changes in project structure and product structure.
For example, splitting a subsystem into two with appropriate adjustments in
product structure and task descriptions; merging two subprojects into one,
possibly implying merging the underlying databases. Implications for ac-' '
cess control.

d. Changes in assignment of computing resources.
For example, move a subproject onto a different machine.

'.5,

9%

S..

16 CMU/SEI-88-TR-7

0

5.2.3. Project Execution (PX)
The execution of a project plan involves two related groups of activities:

1. Communication and Coordination addresses issues of the exchange of project
information as it relates to the structure of the product, the team, and the task.

2. Information Access and Control examines issues of the transparency of the
physical database organization, and of limiting access to information in the data-
base.

Activities

1. Communication and Coordination

a. Provide communication between team members.
This includes the direction of communication, the type of information com-
municated, the communication paradigm, the role of the system in enforcing
rules of exchange, the linkage between tasks and the communication of
task information, the presence of automatic constraint checking on tasks
and their orderings, and the performance of project communication tools.

b. Coordination of work area.
Controlled isolation of work area, environment support of work area, trans-
parent access to environment database from work area, coordination of ac-
cess to product structure.

c. Task completion and notification.
Querying status of teams, tasks, products; exit criteria; automatic versus
manual notification; automatic propagation of changes; propagation of
change notification (e.g., attaching notifications to related objects or to the
task list of the responsible person).

2. Information Access and Control
a. Project database access.

Ability to partition database and provide transparent access.

b. Access control.Types of access, physical versus logical entities, granularity of access con-trol (e.g., spec/body at package or procedure level, "with" clause).

*.o

CMU/SEI-88-TR-7 17

-. " % % _% - - % ._ = _ _-_'= ",, '.= . -- ,-"'--J.""_' .w" ". - ' " '
" ' ,

- .,' ' " 'e,-o.,,%

5.2.4. Product Management (PDM)
Product Management activities include: the generation and storage of project-related documents;
methods or tools for tracking connectivity, enforcing traceability, checking conformance to stan-
dards, controlling product releases, and managing changes; and support for standards.

Activities

1. Traceability of Project Documentation

a. Access trace information.
For storing project information and documentation, what are the structures,
and how are they accessed?

b. Creation of trace information.
Entering or establishing traceability to track the relationship of objects in the
database (e.g., requirements to designs to code).

2. Control of Change Requests/Error Reports

a. Logging, tracking, status queries.

b. Approval of requests.
For example, can only authorized persons issue or approve change
requests ?

c. Support for relating change requests and error reports to each other and to
objects in product structure.
For example, can change requests be attached to releases? Is the mapping
of error reports to change requests one-to-one, many-to-one, one-to-many,
or many-to-many?

3. Quality Control

a. Checking adherence to standards.

b. Validation and acceptance testing.

c. Support for test plan development.
What standards are supported?

4. Product Release Control

(This activity is covered in the Configuration Management experiment.)

5.3. Activity Codes

In Section 7.3, we cross-reference these project management activities using a numbering sys-
tem composed of the initials of a major category, followed by the group number, followed by the
activity letter. For ex3mple, activity PDM-3.a refers to the major category Product Management,
group 3, activity a: Checking adherence to standards, listed on this page.

18 CMU/SEI-88-TR-7

-'"....-......."....".-. .. '."." -"-"---, .- '.'-"-,."- . -'. " - " S. - - . , ,-"" "% .'...'..'...,.','....'..'...-... . '-."-.-..'.-,.-.-.. ., ; ,., .. '. .. ,' ,.- .- . ,-: h ":' .%; ,

6. Definition of Evaluative Criteria and Questions
This section establishes the specific criteria to be used in the evaluation and documents a list of
evaluation questions covering each criteria area.

6.1. Evaluative Criteria
The evaluative criteria fall into four categories: functionality, performance, user interface, and
system interface. The criteria are summarized below in tabular form. The evaluative criteria are
discussed in detail in [2].

" Functionality

" Completeness in major functional areas.

" Level of support for activities.

" Performance

" Execution time efficiency.

" Space efficiency.

" Responsiveness.

" User Interface

" Ability to be learned/used.

" Consistency/uniformity.

" Helpfulness.

" Error handling.

" Communication.

" System Interface

" Ability to be customized.

" Integration with other environment tools.

" Openness to new tools.

" Portability.

• Utilization of operating system.

CMU/SEI-88-TR-7 19

6.2. Evaluative Questions
The questions listed in this section represent the core of the evaluation. The questions are
grouped according to the four criteria previously outlined.

With respect to the Functionality criterion, the experimenter should describe the mapping of
each generic experiment step onto the instance for a target environment. This description is
supported by the command sequences in terms of the target environment. Thus, the functionality
questions do not ask the experimenter to describe a particular experiment step. In the
question/answer session, the experimenter fills out the functionality checklist that has been pro-
vided. Each entry can be annotated if desired (e.g., with comments regarding the particular plan
representations supported such as PERT, GANTT, CPM). The functionality checklist is open-
ended in that the experimenter can point out activities that are part of the target environment but
are not covered by the given functionality list. In answering the questions for each of the sub-
areas within project management, the experimenter provides insight as to how well the target
environment supports the project management activities, and what the architectural similarities
and differences are between target environments.

The Performance criteria section lists questions for which the experimenter should perform ac-
curate time and space measurements. In addition, a set of responsiveness questions asks the
experimenter to comment on whether certain activities provide acceptable response time based
on approximate measures. By "acceptable" we mean that activities which appear trivial or are
performed frequently should execute quickly (in seconds), whereas other activities can take
longer (minutes, perhaps).

The User Interface criteria section asks questions that can be answered for the complete envi-
ronment, assuming that the user interface is reasonably uniform across all parts of the environ-
ment. For parts of the environment that are not integrated, the tools will probably present a
different user interface, and the experimenter should comment on them in addition to giving gen-
eral answers.

The System Interface criteria section probes issues of the integration of tools (both within project
management and between project management and other areas of the environment), the open-
ness of the environment to new tools or additional functionality, whether the environment can be
customized or tailored to the user (via user profiles, for example), the portability or availability of
the environment on diverse hardware, and the mapping from the environment to the underlying
operating system (if there is one) which includes issues of access control and concurrent access
to the development database.

20 CMU/SEI-88-TR-7

N-,NN

6.2.1. Functionality

1. General questions

a. Fill out the functionality checklist for each of the four subareas of project
management. Which project management activities are supported, and
which ones are not?

b. How well does the environment cover the management of all deliverables,
plans, and products?

c. To what degree does the environment impose a management style or man-
agement policies?

d. How well can the environment be adapted to a particular organization?
e. To what degree can the environment support distributed project develop-

ment?
" . f. Does the environment encourage or support reusability in a formal way? Is

there a library of reusable software components? What can be placed in
it--plans, code, designs, etc.-and how is it searched/accessed?

-2 -,. Project Plan Management questions
a. What cost estimation models are used? Are they sufficiently flexible to be

tailored to reflect the characteristics of the organization or project?
S- b. Are the information structures for project plan management sufficiently rich

and extensible to accommodate the information needs (e.g., are there
enough placeholders for relevant information including
comments/annotations to be included in the plan information)? Are the
structures integrated, or does the user need to duplicate information?

c. How well is checking for inconsistencies and constraints in plans handled
(e.g., overassignment of resources, budget overruns, critical path)? For ex-
ample, if a person is reassigned, is all information about that person's work
on the project updated correctly?

U! d. What are the supported reporting formats for project plans and progress
information (e.g., PERT, GANTT, trend charts, resource charts)?

e. How well does the project planning facility support what-if analysis?
. f. How much support is there for synchronizing plan development by multiple

people? for merging plans?
g. How well does the project planning facility support both planning-in-the-

large and planning-in-the-small? (Planning-in-the-large refers to activities
such as global cost estimation and global resource assignment [e.g., num-
ber of people]; planning-in-the-small represents activities such as assign-
ment of individuals.)

h. How flexible is the project planning facility in handling different team struc-
tures? Does it support certain team structures better than others?

3. Plan Instantiation questions

a. How (and how closely) can the planning information be reflected in the de-
velopment support facility to guide the development? Is there support for
developers to track and manage their tasks and to work in the context of a

9, task?

CMU/SEI-88-TR-7 21

%'.. N, %%* N~~-

- * * '* \ **=' - . -

b. How automated is the support for setting up and maintaining development
support facilities to reflect current plans? Is the project plan tied to devel-
opment such that it must reflect the current status of the project?

c. How well is the development facility insulated from what-if analyses of plan-
ning activities? How difficult is it to merge a new plan with ongoing project
execution?

d. How adequate is the support for frequent changes in a project during its
lifetime?

e. How automated are the facilities for reporting project monitoring information
to the planning and monitoring facility?

1. Is there a conflict of interest between setting up accounting structures and
-- access control structures? (With the UNIX operating system, for example,

disk usage accounting as well as access control is based on ownership.
Disk usage on a per team basis can be done on the basis on group owner-. .? ship; this may conflict with one team sharing software with the other team

but not with other users.)

g. What statistics can be collected by the environment (e.g., bugs per
subsystem)?

* 4. Project Execution questions

a. What means exist for finding out the status of teams, tasks, and products
(e.g., on-line queries, interim or periodic reports)? What type of queries are
supported? How easy is it to add custom queries?

b. If task lists are supported, are they strictly private to each user, or is their
information shared among team members (e.g., passed down a hierarchy)?
Are tasks assigned to physical persons or to logical roles? (Different people
can assume the same role, such as maintainer of a library).

c. What does the environment support for logical groups and accounts? (Can
access rights be mapped to a task or only to a person? Does the environ-
ment have the notion of a 'task description" which automatically links a task
with the users assigned to it?)

d. Can project information and status be communicated horizontally (between
peers), vertically (between supervisor and subordinate), or both? What is
the communication paradigm (point-to-point like electronic mail, or broad-

-"- cast like bboard)?

* -e. When information is communicated about a project's tasks, status, or
resources, what is the information content? (is the task description passed
to the user text interpreted only by the reader, or structured information
including schedule information or design fragments?)

f. How "involved" is the system in this communication? Are there protocols to
assist the exchange of project information or enforce rules of exchange, i.e.,
are specialized information flow patterns supported?

g. How automated is the support for task notification and completion? For
example, does the system do automatic checking of constraints on tasks
and their orderings? If one task is dependent on the results of another task,
how is it activated? What happens when a task is completed; are team
members automatically notified? Does the cascading of change requests or
task completion messages create a "ripple effect"?

22 CMU/SEI-88-TR-7
-0

h. Does the environment have a means of grouping tools, e.g., to support dif-
ferent roles? Is the contents of a group fixed by the system or under user
control? Can the functionality of the environment be divided into subsets so
as to tailor it to the needs of the individual user?

i. Can teams intersect, i.e., can one person on a project simultaneously be a
member of more than one team?

j. How does the environment support the user in the user's workspace or
working directory? (After having software checked out is the user inter-
acting with the environment or the regular operating system and command
interpreter while programming? Does the environment help the user by
managing error messages, by providing transparency between the envrion-
ment repository and workspace?)

5. Product Management questions

-," ,o.a. How does the system track connectivity? How does it enforce traceability to
requirements? What is the interrelationship of documents (as opposed to
code)? Are pointers kept that associate, for example, an Ada module with
its design or its test plan? How are relationships represented (e.g., as
pointers in text, as relationships about objects)?

6 b. What tools exist for generating standard deliverables and documents (e.g.,
MIL-STD-2167)? for deriving documents from other documents?

c. What mechanisms exist for managing and controlling change requests?
(Change requests include requests for bug fixes, requests for added func-
tionality, improvements in the user interface, and performan.ce
enhancements.)

d. How are software bugs reported and tracked? Can constraints be imposed
regarding who can submit reports and what reports can be submitted
against? Can bug reports be related to change requests?

e. How is adherence to standards and procedures checked?

f. Are the deliverables from a software project required to undergo formal ac-
ceptance testing?

g. What assistance does the environment give the user to evaluate the quality
of deliverables (path testing, code audits, 0/A plans, etc.)? Are there tools
for rating/ranking quality factors?

h. Are the formal quality standards for a project kept on-line?

i. What mechanisms exist for communicating or reporting between 0/A and
the developers?

j. Is the user's workspace insulated from changes in the developed product?
(For example, if a user has reserved components in an existing library, and
a new version of the library is installed, which version will be picked up?)

C T.

-"CMU/SEI-88-TR-7 23

6.2.2. Performance
1. What is the elapsed time for the following project management activities:

a. instantiating a plan, i.e., setting the development support facility up to reflect
the project plan (to be measured only if not manually performed)

b. generating a plan document and status reports

c. standards checking (e.g., coding standard) if provided

d. retrieving related documents (using traceability relations)

e. processing progress data (for trend analysis)

f. opening/closing a work area

g. creating a task

h. notifying project members (with full propagation) of task completion

i. executing a status query, e.g., modules to be compiled

j. making an object not actively being worked on accessible in a work area for
reading (if not already accessible transparently).

2. What is the storage cost of the following? Consider both the fixed, or one-time, cost
to set up the facility, and the marginal cost of storing one additional message, plan,
etc.

a. plans (schedule, WBS, resource management)

b. plan instances (product structure, team structure, task structure)

c. progress information

d. change control information

e. bug reports and change requests

f. work area overhead (i.e., an empty work area)

g. plan alternatives (from what-if analysis)

h. project statistics

i. relationships of objects (i.e., cost of tracability).

3. What is the responsiveness of the project management facility for each of the fol-
0 lowing:

a. plan development, monitoring, and revision

b. reporting information from development facilities to planning facilities

c. communication between project members (i.e., what time it takes for the
-==recipient to become aware of a message after the sender submitted it to the

communication facility such as electronic mail or environment specific
mechanisms)

24 CMU/SEI-88-TR-7

N .N

d. change management

e. access control

f. critical path analysis

,ow g. context switching between plan alternatives (during what-if analysis)

h. collection of project statistics.

4

I

-.- N % 0,

.'p,

I

* .

I

",CMU/SEI-88-TR-7 25

II

6.2.3. User Interface
For definitions of terms used in this section, refer to [4] or [6].

1. Usabillty/Leamability

a. How easy/difficult is it to learn the project management facilities? (For ex-
ample, is the command syntax awkward. innanonic? Is command comple-
tion provided? Does the system offer selection from legal alternatives?)

b. How easy/difficut is it to use the project management facilities being a
knowledgeable user? (For example, is there an efficient interaction mode?
Can menu and forms prompting be disabled?)

2. Consistency/Uniformity

a. How consistent and uniform is the user dialogue (i.e., the command syntax,
use of menus, etc.)?

b. How consistent and uniform are the naming conventions, on-line help facil-
ities, error diagnostics and handling?

c. What degree of user customization is suppoded (e.g., change key bindings,
write your own command procedures)?

* 3. Hc,pfulness

a. How much of routine interaction is streamlined through automation?
(Examples are: providing command completion or last-used name as de-
fault for parameters on the user interface level, and composite operations to
automate steps with possible confirmation by the user on the
action/command level.)

b. How much context sensitive on-line assistance is provided?

., *-., c. How complete, concise, and appropriate is the documentation?

4. Error Handling

a. How much tolerance does the environment show for minor errors (e.g., syn-
tax errors)?

b. How does the environment cope with mistaken use of commands that have
potentially disastrous results (e.g., by requesting confirmation or by provid-
ing an undo facility)?

c. What is the quality of the error diagnostics (early and correct detection, ap-
* propriate identification and description, differences in on-line/interactive and

printed/batch run diagnostic messages, brief or full error reporting)?

5. Communication

a. How well does the environment use the available hardware for communi-
cation with the user (e.g., pointing devices, multi-window multi-font

* screens)?

b. Is the quality of the information presentation acceptable (e.g., legibility and
size of fonts, choice of background color, placement of windows and menus,
key bindings)?

c. What is the degree of support for multiple views of information (this includes
* formatting, elision, and browsing)?

,,, 26 CMUISEI-88-TR-7

.% .

': ""'d. Is the degree of interactivenesslresponsiveness acceptable (e.g., are diag-
~nostic reports timely; are "simple" functions inexpensive to perform)?

,r

-. S.

jin

I..
i n-p

CM/E-8-R72

7"z

6.2.4. System Interface
1. How tailorable are the report generation facilities for project plans and status re-

ports?

2. How tailorable is the environment to project- or company-specific document for-
mats?

3. How is the team structure and access control accomplished (mapped onto an un-
derlying operating system)?

4. How are the various objects in project management (tasks, plans, teams, products,
., etc.) mapped into an underlying storage structure (e.g., file system, database)? Is

this information stored and accessed in a central repository, or in isolated files man-
aged by stand alone tools?

6 5. Is the environment cognizant of changes in the outside environment? (For example,
how do the environment and the workspaces know when a new Ada compiler is

'0,-1.1 installed?)

" '-*" 6. How good is the coordination and synchronization of the development database
-", (issues such as locking, query while update)?

7. If the environment is built on top of an operating system, how efficient is the inter-

face? For example, does the environment use the operating system's protection
.. mechanism or duplicate the lower-level mechanisms? Or, if a communication tool

such as electronic mail is layered on top of the system, is it possible to subvert the
environment's facilities and deal with lower-level access primitives? Is there an
incentive to do so, e.g., better performance, easier to use?

'8. How portable is the project management environment with respect to hardware?
with respect to different operating systems?

9. How integrated are the project planning facilities with the rest of the environment?

10. How well are the different planning tools integrated within the project planning facil-
ity?

11. Are there well-defined data-exchange formats to pass project planning information
to external project management tools?

12. Is it possible to apply the environment to an existing project (i.e., to import project-
related data which already exists)? How much effort is required to do so?

6.3. Question Codes

In Section 7.3, we cross-reference these questions using a numbering system consisting of the
first letter of the criteria (F, P, UI, SI), followed by the number of the question category, followed

vJ- by a lower-case letter indicating the specific question(s). For example, question Ul3c refers to the
User Interface criteria, category 3, part c: How complete, concise, and appropriate is the docu-

* •mentation?

0

28 CMUfSEI-88-TR-7

7. Phase 3: The Generic PM Experiment
The PM experiment description is organized as follows. First, a description of the experiment
context and setup is given, followed by a short description of the experiment scenario. The main
part, Section 7.3, describes the experiment steps in detail. Each step consists of a description, a
list of activities and questions that are covered by the step, and hints to the person instantiating
the experiment for a particular environment.

7.1. The Context

A software system has been produced and released. The product consists of several subsys-
tems, one of which is the user interface (UI) subsystem described and used in the configuration

.T management (CM) experiment of the Evaluation of Ada Environments methodology. The UI
subsystem is illustrated in Figure 7-1.

%.' %*-

* Subsystem: User Interface
(UI)

k. Parts: Command Language Interpreter Screen Manager Virtual Terminal
(CLI) (SM) (VT)

-" H Command Interpreter (CI) - Window Manager (WM) H Page Te.,nal (PT)

Packages: - ! Support (CiS) Viewpol Manager)VM) VT Support (VTS)

- Stnng Utilities (SU) Image Manager (IM)

- AIM Support (AIMS)

Figure 7-1: Software System Structure

,, The setting for the PM experiment is an organization that is responsible for the maintenance and
enhancement of the delivered product. The organization has available information from the orig-
inal development and a pool of resources that includes people with different degrees of knowl-
edge of the product domain and product. The organization is split into two groups: a mainte-

." nance group and an enhancement group. In the PM experiment, we concentrate on the mainte-
% nance group. The enhancement group may come into play in future extensions of the experiment

% to investigate support for mo-e complex multiple team interactions.

CMU/SEI-88-TR-7 29

I%

The organization is fictitious but representative; it is illustrated in Figure 7-2. We are attempting

to examine the environment for support of different organizational structures.

% Product UI Customers (CU)

F cut CU2
Manager Manager

Product Enhancement Product Maintenance
(MPE) (MPM)

System G:A team Documentation Team 1 (T1): Team 2 (T2): Team 3 (T3)
Analyst (OA) team (DOC) leader

(SA) (r) 1

% T21) (T22)

%(TII)
(T12)

% Figure 7-2: Organizational Structure

The maintenance group ot the Ut subsystem is organized as follows:

0 a manager

*a system analyst

, five teams:

A. three maintenance teams (one for each part of the subsystem)

- a documentation group

• an integration and quality assurance group

The manager is responsible for the overall planning and management of the maintenance activi-

ties. Some activities that we place under the manager may be those of an administrative assis-

tant, but we refrained from splitting them out for the sake of simplicity. The system analyst is

. - responsible for determining necessary maintenance changes.
"The maintenance teams make the actual changes and perform unit testing. Team 1 is structured

Z as a team leader and two team members, with the team leader responsible for the team's plans

and for integrating and releasing their deliverable. The team members are restricted in their

interactions with other teams in that certain activities require approval of the team leader. Team 2

* is structured as a set of two cooperating but independent members. From the outside they are

viewed as one entity, and tasks are assigned to the team, not individual members. Team 3
consists of a single member, i.e., we are testing the environment's ability to minimize manage-

ment overhead. The documentation group is responsible for maintaining the user documentation,

which is part of the product release. The integration-and-quality assurance group is responsible

for working out a quality assurance (QA) plan, performing acceptance testing and integration of

30 CMU/SEI-88-TR-7

0%.

-' . .. ~ . -'. :-. • . - . ..

team deliverables, and packaging of the new release. We assume that each of these two groups
consists of one person.

7.2. The Scenario

In this section, the scenario around which we have organized the PM experiment is described.
An overall graphical view of the scenario may be found in Appendix E.

Two customers have tiled a number of error reports (see Figure 7-3). We have chosen the
collection of error reports and their implications in such a way that it allows the experimenter to
examine how well an environment supports the management of such reports. The set of error
reports will exercise tracking of error reports, mapping of error reports to fixes, relating error
reports to each other, and relating responses to error reports.

CU1: Report #1 not an error in subsystem

Report #2 fix in VT code
Report #3 fix in CLI code

Report #4 fix in CLI design, code, and in UI user manual

CU2: Report #5 enhancement

Report #6 fix in SM code

Report #7 fix in SM code

* Report #8 same cause as for Report #3

Figure 7-3: Error Reports and Respective Actions

The manager initiates maintenance activities which will culminate in a new release. The manager
requests that QA refine a plan for the next release and sends the error reports to the system
analyst for analysis. The system analyst classifies the error reports, traces the development
history to locate the cause of each error, determines the scope of corrective changes by querying
dependency information, and specifies what actions are necessary. QA develops a quality as-
surance plan as well as standard forms and checklists, and installs form support; this is illustrated
in Figure 7-4. This scenario allows the experimenter to examine informal task assignment and
tracking support or, alternatively, to assess the overhead of project planning required for assign-
ing a small set of tasks.

The manager makes an initial global plan, illustrated in Figure 7-5. This plan is passed to team
leaders for refinement. It includes task descriptions to implement bug fixes based on the change
recommendations from the systems analyst. The team leaders report back their refinements,

CMU/SEI-88-TR-7 31

,,;,.,-,. ,.. :. ,, .., ., .. :.. ,.. ,... .,, .,. . .:,:,' . .. - .:.:/ -,, - .. :,-...,.,.,.... ,".'. ..- '.,' , ,, . ,..".',. .%.

which are then merged into one plan by the manager. The plans are approved by the manager
and instantiated. The parallel plan refinement and merging of plans is shown in the second part
of Figure 7-4. This scenario gives the experimenter a chance to investigate support for concur-
rent planning by muhiple people. It also investigates the restrictions imposed by planning tools on
management styles. For example, a tool that requires assigning a task to individuals rather than
to a group of people (or logical entity) does not allow the members of Team 2 to choose among
assignments.

releaserel1.0 no tial eqet o P

refine
reques relas plans • onona

nanssubmit Ipln 3d&y _ st W

error
reports MPM enhancement

release 1.0 initiate initialred 'vactivities global
delivery [i - for new planning

release - - * inil.-lg. - a|p a-*

submitI
error S change

reports error rormerndat ions
reports err or

report
• analysis

Inlzal got, al refineT .

plan

---- A plnpoican uto

p lan poln

intil lo panT1 r fi r T14 Mergea Planiie

pla detaiedSpan-8d8arod-7n

isud ak.- '-'-.";-'-,"--.". '-".": - .- - .-. . - - - ;- - " '2':.'Z~ 2" _ ;Approv.e .e..''

T3:C 1 person

reportg upa2 user manual &unt es

d4umn manualcstme

T2:v2 erson 2A 1 rson P

fix ~~ igr in5 Initial Glba Plttetacpac etn

report 88-R- 337tss ec i eaaey0 cstmrdlvrbe csoe prv

The plan for Team 1 is illustrated in Figure 7-6. Team 1 has changes requiring an update to

documentation. A design review is scheduled for all members. This investigates the ability of the
planning tool to express a whole team as a resource, as well as the ease of assigning one person

to another task in the middle of a longer task. After the design review, the documentation group
starts working on an update to the user manual. This tests for the ability of the environment to

automatically activate a dependent task. Programmer T12 leaves in the middle of his task and is
replaced by T12suc. Because the new programmer requires a week to get familiar with the task,

and the task is on the critical path, the schedule would slip. An investigation of plan alternatives
should come to the conclusion that no slippage is necessary i the new programmer does not
participate in the design review. This scenario tests how visible the slippages in the critical path

are, and how well the project planning copes with plan changes and conflicts. These changes to
the plan are illustrated in Figure 7-7.

Documentation
team

Tit 1
design design o design desi

report #4 Change draft review do: Tit

3
2 we

eks T11-

44' integrate
report 3 and to nne 4 1, Y

T12 T1 2sucntt
code learn code & test 2 e ees

3 wew~s 2iee -I ? esl

total 6 weeks p lanned

TILs TiLve sT L

report re nnel p artg report
progress Pesne hne progress

end of week 2 e nd ot week 3edofee

MPM MPM MPM

Figure 7-6: Ti Plan

Team 2 is assigned several tasks. Its members select a task themselves from the assigned
tasks; this represents a more cooperative setting. During the task of one member, the corrections
in the code potentially require a change in another part of the UI subsystem. By attempting to
make this change himself, the member tests the ability of the environment to control change.

34 CMU/SEI-88-TR-7

" " -' ' '- ". " '" . " "'''''',,,"- "- ".: - .' . "' - - - - " " " " " ,-." - -'" "' " ,% ,' " ",r ,, ". '# .'" ,-" ",-' /' %

*0 Origgnade Plg n

TI12

TIIL

Sissueinert
t asks adts

Fcode 7 MoiaaindoTiPa

CM/E78T- 35..............

OrgnlPo

%.

- -- -- ---

#6fx negae 67.O

an ts fx APS.Kq

#2 fix 1nterat Inerae surerees71we

reresin es

:L 'dL.A.U

QA accepts deliverables from three teams and merges the new versions into an integrated sub-
system. QA receives documentation, then completes a release document. The integration proc-
ess is illustrated in Figure 7-8. The manager signs off on the new release, and it is distributed to
appropriate customers.

S ,Figures 7-9, 7-10, and 7-11 illustrate how the source code of subsystem UI and its components
evolves over time. The upper part of each figure shows who is involved in creating the new
version of the respective component. In the lower part of each figure, the version numbers of the
configurations of the Ul, command language interpreter (CLI), and screen management (SM) are
listed on the left. For each version of the configuration, the thread selecting the appropriate

version of each configuration component is shown by a line of a unique pattern starting from the
version label. The version numbers in the boxes on the right of Figure 7-9 indicate the versions
of the respective parts CLI, SM, and virtual terminal (VT). Finally, Figure 7-12 illustrates the

- - package that is delivered to the customers.

- N

CMU/SEI-88-TR-7 37

MIK

01.

release 1.0

V1.1 V1.2.1 V1.2.2 V1.3

fix#3&4 fix 6 fix #7 fix #2
by Team I byTeam 2 by Team 2 by Team 3

Vi .2

merged fix #6&7
by Q/A Team

k

V1.4

release 1.1

°"'"' SM Vf

Ul: CLI

Release 1.0: V 1 .x.--* V O

"V,-1.," 1w.

Vl.2.2:.

V V1.2: V1.4

V1l.3:

Release 1.1:

I, .

0

Figure 7-9: Version History of UI Subsystem

38 CMU/SEI-88-TR-7

p..

V1.3 v1.4
by Team 1 by Team 1

programmer #1 _programmer #2
" \ /

V1,5
by Team 1

tp Leader

C eLI: CI body SUbody ClSpec SUspec CISsp"&body AIMS spec&body

::, V1.2: 7...... ,.]I-,,;-] .: :,,.- M- r

V 1. 3:"

, : ; w~~~~V.4: ,, -,',,,,,,,,[r,,
V1,5' 'll'r1iqDiI I []
Vi1 .5:

Figure 7-10: Version History of CLI

V1.2 V1.3

* -. by Team 2 by Team 2

K 7U Vi.4
by Q'A Team

SM: WMbdy VM body WMspec VMspec IM spec&body

VI.2: ,

v l.3 • E l, 1 I

Figure 7-11: Version History of SM

CMU/SEI-88-TR-7 39

S

Customer Del. User Manual Ul executable Release note

V1.0 Rel 1.0
release 1.0 * a

V1.1 Rel 1.1
release 1.1- *

Figure 7-12: Customer Deliverable

oi

:.e ..0

-.- 40 CMU/SEI-88-TR-7

* *p.

7.3. The Experiment

The experiment consists of concurrent activities by multiple people. Because it is difficult to
describe concurrent activities in sequential form as experiment steps, we have organized the
experiment steps into groups that represent the roles of different people, such as customer,
manager, and documentation group. The interaction between the roles should be identifiable
from the scenario description above and from the passing of deliverables or informaion. Wi!hin

P, each role, the experiment steps are described in temporal order.

See Sections 5.3 and 6.3 for an explanation of activity and question codes.

7.3.1. The Experiment Setup
The steps listed here must be done before the actual experiment can be carried out. Setup

r includes setting up the environment's development database to contain the initial release of the
system, as well as tailoring the environment to a specific organization or project.

In addition, the person instantiating the experiment on a particular environment will
,: "l' have to determine the appropriate mechanisms for collecting timing and size informa-

tion to answer performance questions.

First, set up the development database. Then initialize the environment with project-specific
parameters regarding this experiment.

- 1. Load the source code for the Ul system and record it in the development database.(Version histories and configuration threads for UI, CLI, and SM are diagramed in

S! figures 7-9, 7-10, and 7-11.) If the CM experiment has been completed, use its
source code configuration of UI as release 1.0.

- .PERFORMANCE MEASUREMENT: Record the storage cost for UI source.
ACTIVITIES: Pl-l.a.5,'

QUESTIONS: P2b
3• 2. Create a design document for each of the three subsystems of U12 and enter them

into the development database as versions. The purpose is to demonstrate the
ability to relate and trace documents, which, in some environments, requires plac-
ing pointers in the document's content (the text, for example).
PERFORMANCE MEASUREMENT: Record the storage cost for the design and for
traceability relations.

O ,ACTIVITIES: PI-1.a
QUESTIONS: P2b, P2i

3. Relate design documents (their final versions) to release 1.0 of the UI source code
to represent traceability.
ACTIVITIES: Pl-l.a, PDM-lb

* 4. Create a user manual document, version 1.0, for U1. 3 Enter it into the development
database, and relate it to release 1.0 of UI.
PERFORMANCE MEASUREMENT: Record the storage cost for the user manual.

*.,. ACTIVITIES: PI-1 .a

* 2Content is irrelevant.

3Content is irrelevant for this experiment, other than a reference to CLI

CMU/SEI-88-TR-7 41

V0 %NN'b

%% % - *%* ' **"**** a*

QUESTIONS: P2b

5. Package up the executable code and the user manual as a customer deliverable,
release 1.0. (See Figure 7-12.)
PERFORMANCE MEASUREMENT: Record the storage cost for the deliverable.
ACTIVITIES: PI-1.a
QUESTIONS: P2b

6. Initialize calendar with work hours, work days, holidays
ACTIVITIES: PPM-1 .a

7. Enter persons as available resources for the project. Different individuals have
different qualifications (analysis, documentation, management, etc.); see Figure 7-2
for details. Enter planned vacation for documentation person during second week
after detailed plan has been approved.
ACTIVITIES: PPM-1 .a

8. Carry out system administrative initialization such as default printers, report for-
mats. Make use of whatever support the environment offers in grouping tools or
creating logical subsets of the environment for specific users.
PERFORMANCE MEASUREMENT: If work areas are set up at system initialization time,
record elapsed time and space to create a logical work area for a member of one
team.
ACTIVITIES: PPM-1 .a, PI-2.a, PI-2.b, PI-2.c
QUESTIONS: F4h, Plf, P2f

7.3.2. The Customers
The two customers, CU1 and CU2, are using UI Release 1.0; they encounter problems, and
submit error reports. They are informed of the treatment of these reports, and will receive the
new release with the expected bug fixes.

1. Customer CU1 submits four error reports regarding UI release 1.0 to the UI cus-
tomer service address CS.UI@<Company>. (The actual text of the error reports is
not relevant for the purpose of this experiment, unless the environment provides
special features for content processing that should be highlighted as part of the
evaluation.)

2. Customer CU2 submits four error reports regarding Ul release 1.0.

3. Customers receive and examine responses regarding treatment of the submitted
reports.

4. Customers receive a release notice for UI release 1.1, which indicates changes in
the new system. They try to relate the information in this document to the sub-
mifted error reports and earlier responses. Customers request actual delivery of
release 1.1.

5. Customer CU2 checks on status of his first error report (report #5). The initial
4 response had stated that it would be handled in an enhancement release. Cus-

tomers receive delivery of Ul release 1.1.
ACTIVITIES: PDM-2.b
QUESTIONS: F5e

I

42 CMU/SEI-88-TR-7

I

7.3.3. The Manager for Product Mainienance
This individual is responsible for handling error reports received by customer service.

1. Generate a report of error reports (on-line and hardcopy).
ACTIVITIES: PDM-2.b

2. Initiate error report analysis task for system analyst and request a response within
five days.

3. Initiate task to QA to adjust 0/A plans for maintenance release (release 1.1) and to
define a release note document format.
PERFORMANCE MEASUREMENT: To test the minimal overhead due to planning activi-
ties, consider the trade-offs, on the one hand, of carrying out a planning step with
resource allocation or, on the other hand, of assuming that the manager does infor-
mal resource allocation negotiation with QA and the system analyst.

4. Receive recommendations from system analyst, respond to customer about report
#5 by recommending its accommodation in the next enhancement release (release
2.0), and inform manager of enhancement project. Approve recommended change
requests.
PERFORMANCE MEASUREMENT: Note responsiveness of change management facil-
ities.
ACTIVITIES: PDM-2.a
QUESTIONS: P3d

5. Turn remaining recommendations into an initial global plan (see Figure 7-5).

a. Define work packages in the initial WBS for three maintenance teams, a
documentation group, and a 0/A group.

b. Estimate man-days, number of resources (persons), number of days, num-
ber of changed lines of code.

c. Perform a cost estimation and set up a budget for the project as well as for
teams.

j 3d. Work Out an initial global schedule.

e. Generate a document containing the initial global plan. If possible, generate
different views of the plan information, e.g., PERT chart, work package list-
ing, resource chart.

f. Retain a version of the plan as part of the project history.

PERFORMANCE MEASUREMENT: For each sub-step above, record the responsiveness
of the tool or facility used in plan development. Record the storage cost of each
object in the global plan: WBS, schedule, PERT chart, cost estimate, etc. Note
how long a critical path analysis takes as an indication of interactiveness.
ACTIVITIES: PPM-1 .b, PPM-1 .c, PPM-1 .d, PPM-1 .e, PPM-1 .g, PPM-i i
QUESTIONS: F2a, F2b, P2a, P3a, P3f, S4

6. Issue tasks to the documentation group, the 0/A group, and the three maintenance
teams for plan refinement and feedback. Teams 2 and 3 and Documentation are
requested to confirm their aspect of the plan. Team 1 and 0/A are requested to
refine their part of the plan.
ACTIVITIES: PI-1 .C

7. Merge refined plans from teams into a global plan. Perform consistency checks on

CMU/SEI-88-TR-7 43

1-~< .; ~ C- -~:<;~ . ~ ~ Z . P ~ .;~ ~ '-:~4W

I

the new version of the plan: budget overrun, schedule overrun, overassignment of
441 people, etc.
* ACTIVITIES: PPM-1 .h

QUESTIONS: F2c, F2f, F2g

8. Save the new version of the plan as project history. Generate a document contain-
-N ing the plan. If possible, generate a report highlighting changes in the two versions

of the plan.I' ACTIVITfES: PPM-1.i
QUESTIONS: F2d

A 9. Approve the plan. Inform customers of release schedule for error reports being
handled by Ul release 1.1. Inform teams to proceed according to approved plan,
e.g., by issuing tasks. Set up access control so that only the team responsible for a
system part has "modify" access rights, while others have only read access to the
specification. (Modifying the specification of a part requires manager approval.) InI, the case of Team 1, inform the team leader, who in turn will issue the tasks to the
team members.

%;, PERFORMANCE MEASUREMENT: Record elapsed time for plan instantiation. Record
storage cost of plan instances. If work areas are set up when tasks are issued,
record elapsed time and space to create a logical work area for a member of one
team.
ACTIVITIES: PPM-1 .f, PI-I .b, PI-1 .c
QUESTIONS: F2h, F3a, F3b, F3d, F3f, F4i, Pla, P2b, P2f

10. Generate first monthly progress report. Produce summary report as well as com-
plete report of all views supported by the project management software. Record
progress report in project history.
PERFORMANCE MEASUREMENT: Record elapsed time and storage cost to produce

--"reports and get project statistics.
ACTIVITIES: PPM-2.a, PPM-2.b, PPM-2.c, PPM-2.d, PPM-2.e

QUESTIONS: Plb, P2c, P2h, P3h
. 11. Receive notice that personnel change in Team 1 causes tasks on critical path to

slip. In the process of what-if analysis, query the status of the project (teams,
tasks). Generate a report highlighting the plan changes. Determine that no slip-
page is necessary if new team member, T12suc, does not participate in design
review. (And consider how the plan would be changed if it were necessary to
increase the number of working hours or add staff to the project.) Inform leader of
Team 1 to reflect this fact in his plan execution. Record the plan revision in the

* project history.
PERFORMANCE MEASUREMENT: Record elapsed time for status query.

" ACTIVITIES: PPM-3.a, PPM-3.b, PPM-3.c, PPM-3.d, PPM-3.e, PPM-3.k, PI-3.a,
PX-1.a
QUESTIONS: F2e, F3b, F3c, F3e, F4a, Pli

12. Consider other changes in the project. These include changes in work breakdown
or task structure, changes in schedule, changes in project structure, changes in
product deliverables, adjustments to cost parameters based on actual data, and

J'.%-, changes in computing resources.
PERFORMANCE MEASUREMENT: Record storage cost of plan alternatives. Note
responsiveness of system when context switching between alternatives.

ACTIVITIES: PPM-3.f, PPM-3.g, PPM-3.h, PPM-3.i, PPM-3.j, PI-3.b, PI-3.c, PI-3.d
QUESTIONS: F3d, P2g, P3g

44 CMU/5EI-88-TR-7

,0 .

13. Generate second monthly progress report. Perform a trend analysis which should
show that delivery of a design document to the Documentation group slipped, but
that the schedule is not affected. Record progress report in project history.
PERFORMANCE MEASUREMENT: Record elapsed time to process progress data for
trend analysis.
ACTIVITIES: PPM-2.a, PPM-2.b, PPM-2.c, PPM-2.d, PPM-2.e
QUESTIONS: F2b, F4a, F4e, Ple

14. Receive c'.::tomer release from Q/A and approve it for release. Generate a report
with statistics on project execution (e.g., computer utilization or lines of code
changed) to mirror the organization's concern for metrics.
PERFORMANCE MEASUREMENT: Note responsiveness of communication.
QUESTIONS: F3g, F4e, F5f, P3b

15. Generate distribution list based on filed error reports that have been handled by this
release. Distribute release notice to customers.
ACTIVITIES: PDM-2.b, PDM-2.c, PDM-4

16. Invite all project members to a release completion party.
ACTIVITIES: PX-la

17. Distribute customer delivery release 1.1 to responding customers.
ACTIVITIES: PDM-4

7.3.4. The System Analyst
The system analyst receives the collection of error reports, analyzes them and the source code of

the corresponding release, and provides recommended actions to the manager for each problem
report.

1. For error report #1, prepare and send a response to customer indicating that the
reported item is not an error in the Ul system.
ACTIVITIES: PDM-2.a, PDM-2.b

2. For error report #2, indicate a recommended change to VT with an indication of the
complexity of the change.

3. For error report #3, indicate a recommended change to CLI package str utilities
with an indication of the complexity of the change.

4. For error report #4, examine the user manual, trace to the source code of CLI,
examine its related design document, and recommend a change to the design,
source code, and user manual. The affected package is command_Interpreter.
PERFORMANCE MEASUREMENT: Record elapsed time to use the traceability relations.
ACTIVITIES: PDM-1 .a
QUESTIONS: F4j, F5a, Pld

5. For error report #5, indicate that the reported item should be handled as an en-
hancement.

6. For error report #6, indicate a recommended change to SM package
window_manager with an indication of the complexity of the change.

7. For error report #7, indicate a recommended change to SM package
vlewport.manager with an indication of the complexity of the change.

8. For error report #8, indicate that the reported item is the same as reported in #2.

CMU/SEI-88-TR-7 45

~%

9. Pass recommendations for error reports to manager (if possible, in the form of
proposed change requests).
PERFORMANCE MEASUREMENT: Record storage cost of change control information.
ACTIVITIES: PX-1 .a, PX-1 .c, PDM-2c
QUESTIONS: F4g, F5e, P2d

7.3.5. Team 1
This team has three iiiebers: a leader and two programmers. It is responsible for the packages
in UICLI.

1. Team leader receives global plan from manager, refines it and assigns people to
tasks, and sends a detailed plan back to manager.
PERFORMANCE MEASUREMENT: Record elapsed time to create a task. If work areas
are set up by programmers, record elapsed time and space to create a logical work
area for one programmer.
ACTIVITIES: PPM-1 .f, PX-i.a
QUESTIONS: F4d, F4e, F4i, Pig, P2f

2. Team leader accepts tasks 3 and 4 from manager, sends 4 to programmer #1 and
3 to programmer #2.
PERFORMANCE MEASUREMENT: Note responsiveness of communication.
ACTIVITIES: PX-1 .a
QUESTIONS: F4b, F4d, F4e, P3c

3. Programmer #1 reviews bug report in 4 and begins design change. Programmer #2
begins change to code.
PERFORMANCE MEASUREMENT: Record the elapsed time to bring modules into work
area.
QUESTIONS: Fe, Plj

4. Leader reports progress and resource consumption at end of week 2.
PERFORMANCE MEASUREMENT: Record elapsed time to create report.
ACTIVITIES: PX-1 .C
QUESTIONS: F3e, F4d, F4e, Plb, S1

5. Programmer #2 quits the team in week 3 of his assignment. Team leader requests
manager to assign a new employee to that task, proposes an adjusted plan for
team 1 (still assuming all members participating in the review) and gives estimate of
slippage caused by replacement of personnel. Receives approval from manager.
PERFORMANCE MEASUREMENT: Note responsiveness of change procedures.
ACTIVITIES: PI-3.a, PX-I.a, PX-2.a, PX-2.b
QUESTIONS: F3d, F3e, P3d

6. Team leader grants the new programmer (T12suc) the same access to the source,
designs, etc. that the ex-programmor (T12) had.
PERFORMANCE MEASUREMENT: Note responsiveness of access control.
QUESTIONS: F3d, F4c, P3e

7. Programmer #1 finishes design change (as approved by team).

8. Design review by entire team.

9. Team approves design change and sends document to Documentation group.
ACTIVITIES: PX-1 .a
QUESTIONS F4e, F4g, F5e

46 CMUISEI-88-TR-7

," .'., -", ".?, , ". " -'." ", ,.-'- "- '- " .'." -' . -". ..: -.'.:,'.i', ", -.-".".".-' ,'.-'. l ,"..j.'r".. J , ,: "..'..".- -% ,r

10. Programmer #1 makes change to code and tests, then passes new version to
leader.

11. New programmer #2 completes change to code and tests, then passes new version
to leader.

12. Leader reports progress and resource consumption at end of week 6.

13. Leader integrates changes, tests, and notifies the two programmers of successful
test. Approves new release of UI_CLI and sends it to Q/A. Notifies manager.
PERFORMANCE MEASUREMENT: Record total storage space of messages for team
leader, programmer #1, programmer #2. Record elapsed time for notification of
task completion.
ACTIVITIES: PX-1 .a, PX-1 .c
QUESTIONS: F4c, F4d, F4g, F5e, P1 h, P2e

7.3.6. Team 2
This team has two members who work semi-independently. They are responsible for the
packages in UI_SM.

1. Receives global plan from manager and sends back confirmation.

2. From task list [6 7] sent by manager, programmer #1 chooses task 6.
ACTIVITIES: PX-1 .a, PX-1 .b
QUESTIONS: F4b

3. From task list [6 7] sent by manager, programmer #2 chooses task 7.

4. Programmer #2 attempts a direct change to UIVT. This is an invalid access re-
quest and should be flagged by the system. If the attempt is denied, consider
programmer #2 sending a change request to Team 3.4

PERFORMANCE MEASUREMENT: Note action of system.
ACTIVITIES: PX-1.b, PX-2.b
QUESTIONS: F4d, F4j, F5c, S3

5. Both programmers report progress and resource consumption at end of week 2.

6. Programmer #1 makes change to code, tests, sends new version to Q/A.
(Programmer #2 is working in parallel and should not see the new version.)
ACTIVITIES: PX-1 .C

QUESTIONS: F5j

7. Programmer #2 makes change to code, tests, sends new version to Q/A. Notifies
manager.
ACTIVITIES: PX-1 .C

7.3.7. Team 3
This individual is responsible for packages in UIVT.

1. Receives global plan from manager and sends back confirmation.

2. Accepts task 2 from manager.
QUESTIONS: F4b

4 For this experiment, however, programmer #2 proceeds without changes to UI VT

CMUSEI-88-TR-7 47

-.- ~~~ %..; . .- . . , . N"."-"."-"-". ."%- . .- '-"-"-'--,--'_,_. .. , , ,, ' .,: ,.. '-',' ',.,.'."-"-'-;. , ...

3. Makes change to code and tests.

4. Reports progress and resource consumption at end of week 2.

5. Passes new release of UI_VT to Q/A. Notifies manager.
ACTIVITIES PX-1.c

7.3.8. Documentation Group

1. Receives plan from manager and sends back confirmation.
ACTIVITIES: PX-1 .a, PX-1 .c
QUESTIONS: F4f

2. Takes one-week vacation, as planned. Upon his return, he wants latest status c,
his involvement in project.
ACTIVITIES: PPM-3.e, PX-1.a

3. Accepts design document changes from Team 1.

4. Updates user manual and releases it to 0/A.
ACTIVITIES: PX-1 .C

7.3.9. 0/A Group
1. Receives task from manager. Defines a release note format (or calls up a template

from a library) as the procedure for accepting a maintenance release. Adjusts 0/A
plans for new release.
ACTIVITIES: PDM-3.a, PDM-4
QUESTIONS: F5a, F5b, F5c, F5d, F5f, F5g, F5h

2. Refines plan and sends it back to manager.
QUESTIONS. F5i

3. Receives two (independent) fixes from Team 2. Performs acceptance test on
UI_SM. Integrates this change into the subsystem.
ACTIVITIES: PDM-3.b
QUESTIONS: F5f

4. Receives one fix from Team 3. Performs acceptance test on UI_VT. Integrates
these changes into the subsystem.
ACTIVITIES: PDM-3.b

QUESTIONS: F5f

5. Receives two (bundled) fixes from Team 1. Performs acceptance test on UI_CLI
and checks new source against coding standards. Integrates these changes into
the subsystem.
PERFORMANCE MEASUREMENT: Record the elapsed time required for the standards
checking tool.
ACTIVITIES: PDM-3.b

QUESTIONS: F5f, Plc

6. Receives new user manual from Documentation group.
ACTIVITIES: PDM-3.b

7. Consider how the Q/A group would report back to the developers if they discovered
a problem in the newly-generated document.
ACTIVITIES PDM-2.c

48 CMU/SEI-88-TR-7

% % %

,- QUESTIONS: F5i

8. Performs regression test on subsystem.
ACTIVITIES: PDM-3.c
QUESTIONS: F5g

9. Creates a customer deliverable, release 1.1, which consists of the latest executable
code and user manual plus a release note (see Figure 7-12), and informs manager.
ACTIVITIES: PX 1.a, PDM-4
QUESTIONS: F3e, F4a, F4d, F4g, S2

. "

4

4 .

K.

I

.. 4

.CMU/SEI-88-TR-7 49

I

*~q %U

~sjv.

b.

0
-A

-A

-A
-A

A~~A

''A

.4.:
-s

4AA -,

A,).

A*~A

S

-A.-
'A

S

S

50 CMUISEI-88-TR-7

0

AA~ A~*~* A AAAAAA.

AA~~~AAA'AA~ A.. A 'A

il

8. Hints to the Experimenter
The PM experiment has been reviewed and applied to several environments. From that experi-
ence, as well as the instructions and procedures used in the first set of evaluations based on the
SEI method (documented in [4)), some guidance is in order for the persons responsible for ex-
ecuting the experiments on a particular environment. The guidance to the experimenter fall into
two areas: how to go about performing the experiment and how to deal with incomplete coverage
of functionality.

8.1. Process of Experiment Development
The application of the PM experiment is not a simple task that can be done by naively following
the steps one by one as described in the generic experiment. The experimenter first has to get an
overview of the experiment as well as the concepts supported by the environment. This is fol-
lowed by a high-level design of the experiment steps in terms of the environment. This requires a
detailed knowledge of the environment concepts and their implementation. Finally, the command-

-*.,level and keystroke-level design of the experiment steps can be done. Because the experiment
is comprehensive, some steps may seem repetitive, e.g., each team creating new versions.
Results of such activities feed into later steps in the experiment and therefore should be per-
formed. However, some of the details in a step may not have to be documented at the keystroke
level. On several occasions, the experimenter is given a chance to explore additional features of
the environment (this is indicated in the experiment description with the words "Consider ... ").

These instances are optional.

The execution of the experiment has some pitfalls as well. It is important to investigate a way of
making snapshots of the environment database and allowing restoration of these snapshots. This
is especially useful if the experimenter is not very familiar with the environment and is learning

* Iabout it at the same time he is performing the experiment. Because the experiment was de-
signed to bc comprehensive and realistic, many of the functional areas covered by the exper-
iment are interrelated. Therefore, it is difficult to try to first apply the experiment to a subset of the

-. available functionality and then extend it. Another reason is that integrated environments some-

• .times assume use of full functionality and provide limited support for augmenting an existing
database. However, this is the process that an crganization will have to go through when new
technology is inserted.

A particularly thorny problem in the experiment's execution is the time scale of the experiment.

-"* The scenario calls for a series of activities to be carried out by different groups, and for each
activity to take some specified amount of time (ranging from days to weeks). However, executing

4 an experiment step requires hours, not weeks; in other words, the "project" does not take place in
%' real time. We do not see any clean way to avoid this problem. On some systems, the ex-

perimenter can proceed with the experiment more or less as defined with only the schedule awry.
On other environments, it may be possible to change the system clock to reflect changes in
simulated time, and consequently get project information that is correctly recorded. As a last

4 resort, the experimenter could telescope the tasks in the experiment to make their durations

much shorter. No doubt other tricks could be played.

CMU/SEI-88-TR-7 51

e

-AA ,*1,"-

K.

8.2. Incomplete Functionality Coverage

Most environments will be deficient in some of the facilities exercised by this experiment. If many
of the tools commonly used in project planning and control are missing from the environment
under study, it is probably not a good candidate for an evaluation of project management fea-
tures. If, however, the environment has poor support in only a few areas (e.g., there is no cost
estimation tool, or no planning tool, or access control is not project-oriented), you can proceed
with the experiment and make allowances for those missing or rudimentary capabilities. This
section is an attempt to give you some guidance on how to deal with the most likely deficiencies.
It is organized by activity area.

8.2.1. Project Plan Management
For creating and revising the project plan, make use of whatever planning tools are provided:
WBS, scheduling, cost estimation, resource assignments, etc. Where none are provided, as-
sume the planning has been done with some planning tool. Based on the information provided in
the scenario, enter and update the planning data manually and perform the plan instantiation
activities.

-.. The parallel development of plans and merging of individual plans into a global plan is not sup-
ported by most current project management environments. You will have to manually merge
individual plans from the members of the teams.

In the PM experiment, what-if analysis is triggered by a change in personnel which forces the
manager to juggle the assignment of human resources in order to keep the schedule from slip-
ping. You should run as many other exploratory scenarios as the system and time permits, since
the capability to answer what-if questions is extremely valuable. These activities are described in
PPM-3, Project Plan Revision.

8.2.2. Plan Instantiation
If an explicit reporting facility is not provided, you will have to write queries to extract resource and
status information from the project database.

Planning may not be integrated in the environment, i.e., it supports planning but does not support
tasks (activities) in the planning stage. To get around the lack of formal task management, you

0
could have the manager communicate with other project members via electronic mail, sending
plans, error reports, etc., and receiving progress reports.

8.2.3. Project Execution
If the system is weak in tying project-related communication to tasks (for example, notifying a

S.-project member that a task is completed), this will be a mostly manual procedure of sending
electronic mail messages.

An operating system's access control may not match the "team" model; it is often undesirable to

couple access control to project accounting. Most environments have primitives for access con-
* trol, but some have better support for logical groups and accounts. Some have the notion of a

52 CMU/SEI-88TR-7

e0

5,

"task description" which automatically links a task with the users assigned to it. If the project
management environment has no notion of access control, try to map onto the operating system's
access control model and determine the appropriateness of this model.

: .;~8.2.4. Product Management
Traceability across life cycle products may be accomplished by the system in a simple-minded
way (for example, by naming the related document in the text), or it may not done at all.

*, Similarly, the ability to track project documents as they evolve may be missing or may call for
, considerable knowledge and effort on the part of the user.

"5,

If the environment does not have a mechanism for controlling change requests and bug reports
(tracking them, for example, or relating them to designs or code to be changed), this is not a
serious impediment to carrying out the PM experiment. Assume that the maintenance group can
get by with electronic mail and text files for informing their own members ar.d their customers.

I

-5

.55

UV

-t .5

I

-5.-

5..

-.. CMU/SEI-88-TR-7 53
I

0
9

N,

N,

wp.~

N

-N.

PD.

I.,.

w.

N.

P.

N.
P.

N.

0

'N

'N.

.1~
4.

N.

0
.1's
4.

4.,

4.

S
'P.

'I.

"N

N,,
N'-

0

54 CMU/SEI-88-TR-7

0

* 'N
5

N,.' %.%.~"~,'*~: ~'*f *N~N N5 9 5..~.. 5* ~'5*

9. Summary
! iThis milestone report is the sixth in a series of experiments designed to apply a rigorous method-

ology in evaluating Ada environments. In it, we review the methodology, discuss the scope of
.. ,-." software project management, define a set of activities and evaluative questions by which to

S-. assess a project support environment, and set up a generic experiment organized by the roles
commonly found in project management. The design of the PM experiment has been validated

*) by internal review and by partial instantiation on two environments.

:71

'.

,Pg

.

0

:S8'5
:.-

• CMU/SEI-88-TR-7 55
0,,

a',

-,

Sr

56CM/EI8-T-

0°.'

i. . *.. ,~ ~ - *. '

V ..
I

10. References
[1 Feiler, P.H., and Smeaton, R.

Managing Development of Very Large Systems: Implications of Integrated Environments.
In Proceedings of International Workshop on Software Version and Configuration Control.

German Chapter ACM, GI, Siemens AG, Teubner Verlag, Grassau, W-Germany, Jan,
1988.

Forthcoming as an SEI technical report.

[2] Weiderman, N.H., Habermann, A.N., Borger, M., and Klein, M.
A Methodology and Criteria for Evaluating Ada Programming Support Environments.
SEI Annual Technical Review :17-26, 1985.

[31 Weiderman, N.H., Habermann, A.N., Borger, M., and Klein, M.
A Methodology for Evaluating Environments.

In 2nd ACM SIGSOFTSIGPLAN Symposium on Practical Software Development
Environments, pages 199-207. ACM, December, 1986.

[41 Weiderman, N.H., et al.
Evaluation of Ada Environments.

.N' Technical Report CMU/SEI-87-TR-1, Software Engineering Institute, March, 1987.

[5] Borger, M.W., Feiler P.H., Klein, M.H., and Weiderman, N.H.
Evaluating Ada Programming Environments: Lessons Learned.
SEI Annual Technical Review :13-26, 1987.

[6] Borger M.W., and Weiderman, N.H.
Generic Evaluation Experiments for Assessing Ada Environments. Support of Configu-

ration Management Activities.
In Proceedings of the Ada Europe Conference, Stockholm, Sweden. May, 1987.

he

°.

CMU/SEI-88-TR-7 57

I

4""4

0
a'.I-p

ap-p
-II

a'.

yr.

I
N.
0

B
'a

'a

a'.

I
S

cv.

S

L

K-

0

I58 CMU/SEI-88-TR-7[7 ~ -Z<~.;#?-Z'.-Z~-Z tZK ~~Zr - 'V

S

I,

Acknowledgements
This report has been reviewed internally by other members of the Evaluation of Ada Environ-
ments project, including Bob Ellison, Susan Dart, Cliff Huff, Dan Miller, and Marc Graham, as well

> -as other members of the SEI technical staff. It has also been sent outside the SEI to Cordell
_, Greene of the Kestrel Institute, Vic Stenning of Imperial Software Technology Ltd., and Yosi

Amram of Rational. We especially wish to thank Bob Glushko of the SEI and Ram Banin of
Atherton Technology for their editorial comments. Our report has benefited from the expertise of

these individuals. Finally, we wish to acknowledge Dan Miller's work in instantiating the PM
experiment on the ISTAR environment.

5',5

.5

,I: .5

'

.°

.

"I

,=

'"CMU/SEI-88-TR-7 59

- A .1' 5

60 CMU/SEI-88.TR-7

Appendices
Appendix A, Functionality Checklist, is a cross-reference between activity (column one) and
experiment step (column 2). A Y in column 3 means "yes, the activity is supported by the
environment." Column 4 is reserved for comments or further explanation about a facility in the
environment. The following abbreviations apply:

ACRONYM MEANING/ROLE SECTION

Setup Set-up for experiment 7.3.1
CU Customers 7.3.2
MPH Manager for Product Maintenance 7.3.3
SA System Analyst 7.3.4
TI Development Team 1 7.3.5
T2 Development Team 2 7.3.6
T3 Development Team 3 7.3.7
DOC Documentation Group 7.3.8
QA Quality Assurance Group 7.3.9

Appendix B, Cross-Reference Table for Execution of Experiment associates questions with
experiment steps within criteria area. The same abbreviations are valid. The purpose of this
table is to help complete the answers to questions by showing which experiment steps contribute
to the answer.

Appendix C, Cross-Reference Summary Matrix, shows at a glance the phases and steps in the

C evaluation methodology as it relates to the project management experiment.

Appendix D, Performance Questions Within Experiment Steps shows which experiment steps
ask questions about performance and in which area (elapsed time, memory space,
responsiveness).

Appendix E, Activities and Plans (Global View) is a chart of the entire project management
scenario.

Armendix F, An Illustration of Documenting an Instance of the PM Experiment illustrates one
project management tool: MacProject for the Macintosh.

CMU/SEI-88-TR-7 61

-: .. - - ,-" -" -

62 CMU/SEI-88-TR-7

4

Appendix A: Functionality Checklist

Step # Supported Observations
(YN)

Project Plan Management
Project plan creation
tailor planning support facilities Setup-6,Setup-7,Setup-8

', link plans to baseline MPM-5
- develop W BS ... M PM -5

estim ate work cost M PM-5
" develop schedule MPM-5

* assign resources ... MPM-9,T1-1
estimate project cost MPM-54 merge group plans into global plans MPM-7
generate plan document MPM-5,MPM-8

Project monitoring
report on actual progress MPM-10,MPM-13
analyze progress against schedule MPM-1OMPM-13
compare actuals to estimates MPM-10,MPM-13
analyze resource utilization MPM-IOMPM-13qlgenerate summary reports MPM-10,MPM-13

Proje'- plan revision
baseiine the plans M PM -11
perform what-if analysis MPM-11
handle schedule slippage MPM-l 1

2: handle personnel changes MPM-1 1 ,DOC-2
handle changes in W BS MPM-12
handle changes to project structure MPM-12
handle changes in deliverables MPM-12
adjust costs based on actuals MPM-12
handle computing resource changes MPM-12

' generate reports .. M PM -11

Plan Instantlatlon
•. Project installation

set up product structure Setup-i ,Setup-2,Setup-3,Setup-4.Setup-5
set up team structureM PM-9
set up task structureMPM-6,MPM-9

Reporting mechanism installation
4 set up task completion reports Setup-8

set up accounting reports Setup-8
set up statistical reports Setup-8

Reflecting modifications to plan
reassignment of peopleMPM-11 ,T 1-5
changes in task structure/schedule MPM-12
changes in project or product structure MPM-12
changes in computing resources MPM-12

4

=.'-

CMU/SEI-88-TR-7 63

4
%%

•. ,a ,c-:, ***- - - - -.. 5.. ~ - s-

- * ., aa-* -.

"

Project Execution
'. Communication and coordination

communication between team members MPM-11 ,MPM-1 6T1-1 ,T1-2,TI-5,T1 -9,
T1-13,T2-2,QA-9,DOC-1 ,DOC-2

work area coordination T2-2,T2-4
task completion and notification SA-9,TI-4,TI- 13.T2-6,T2-7,

T3-5,DOC-1 ,DOC-4

Information access and control
project database access T1-5
access control ... T1-5,T2-4

Product Management
,. Traceability of project documentation
. access trace information SA-4
. creation of trace information Setup-3

Control of change requests
approve requests MPM-4,SA-1
log and track requests CU-5,MPM-1,MPM-15,SA-1 ,SA-9,QA-7
display change history................................. MPM -15

Quality control
check adherence to standards QA-1
V&V and acceptance testing QA-3,QA-4,QA-5.QA-6
support test plan development OA-8

Product Release Control MPM-15, MPM-1 7,QA-1,OA-9

i,

iA

I

• -I

"-64 CMU/SEI-88-TR-7

Appendix B: Cross-Reference Table for Execution of
Experiment

QUESTION EXPERIMENT STEP

F2a MPM 5
F2b MP?.4-, MPM 13
F2c MPM 7
F2d Mpm 8

F2e MAPM-1I
F 21 MPK47
F2g MPM7

F 2h MPM 9
F3a MPM 9
F~b MPM 9, LIPM- 11
F3c MPM 11
F3d MPM-9. MPM-12. 11-S. T1-6
F3e MPM I1I. T11.4. T1-S. GA-9

*F3f MPM 9

.. F39 MPM.14,IIM1.G-

F4b. T1 2. T2-2. T3-2
F4C T 116
F4d Ti1,T1.12. T1-4. T1113. 12-4. GA-S
F 4 MPM 13. MPM 14. T11-1. 711.2, 114. T119. T11.13
141 DOCI1
F 4g SA-9. T1.9. Tl-13, 0kg
F4h Setup-8
F41 MPM-9. T11I
F 1 SA 4. T2.4

Fa SAd.G-

FSc T2-4, OA-I
F5d CUS5
F~e GA.I
FS 51 MPM 14. GA.1, OA-3. OA-4, GA 5

F3 5, GA-2, Q-

Pia MPM 9
P, MPMI 10,T1.4
pic G A-5
lidI SA-4
Ple MPM 13
Pi, St1-
Plg T1-I
PP. 11-13
P1, MPM 11
P1j 11-3
P2-3 MPMS5
P2b Se'o- 1. Sel~o 2 Se!,, 3. Seip 4, Se'l.o S, MAPt C4

P~c MAPM. 1()
P2c SA 9

*P~e T1-13
P21 Se: ;) 8

* P25 APM- i2
P2.' MPM Ir

.P2. S e! ~2
Pla mPm S
P3D) MPIA- 14
Pac Ti-2
P34 MPM-4, TI-5
P3e T11-6
P 31 MPM S
P3g MPM-12
P3h MPM-10

SI 11-4

S3 T2 4

S4 MP!M4S

CMU/SiF--88-TR-7 6

- .- .. -- . .65

4-.

,,.

0€

'1,

.

.-

4.

b.4

4.-.

4..6 M /SI88T -

r4.

0"

.4.

Appendix C: Cross-Reference Summary Matrix

-_Identification and Classification of Key Project Management Activities

PPM Project Plan Management

PPM I Project Plan Creation
PPM 2 Project Monitoring
PPM 3 Project Plan Revision

PI Plan Instantiation

Pt 1 Project Installation
PI 2 Reporting Mechanism Installation
PI 3 Reflecting Modifications to Plan

S"PX Project Execution

PX 1 Communication and Coordination
" PX 2 Information Access and Control

PDM Product Management

PDM 1 Traceability of Project Documentation
PDM 2 Control of Change Requests/Error Reports
PDM 3 Quality Control

Evaluative Criteria and Associated Questions

F Functionality

F1 General Questions
F2 Project Plan Management Questions

" F3 Plan Instantiation Questions
F4 Project Execution Questions

* F5 Product Management Questions

4 P Performance

* U User Interface

S System Interface

CMU/SEI-88-TR-7 67

N

S'C
0

'S
4.,,

'V

4. V
N

Mv.?

49

S.

4.

Mv'

It'
I,

S
a).

2a~

'S.

At

S
V

--I-.
ad,,.

V.
A)' ,%

0

S

CMUISEI-88-TR-7

0
A.

tW*~~ *,.~;% ',%'W% '. a
4 ~

%% Mv 'p > .~i~zycc -~ ' w V''tC" *~r *'

O'

Appendix D: Performance Questions Within Experiment
Steps

N,)

Li
z
LU

z
LIi 0'0 CL_

% % -" (L_ U

ROLE STEP - c

." .. Set-up 1
* 2

4
6 5

8

Manager for Product Maintenance 4i5 0 0

9 0 0

10
11
12

-. 13
14

System Analyst 4
S9!lb,

Team 1 1
2

" : 4

*l 6
13

Quality Assurance Group 5

CMU/SEI-88-TR-7 69
I-

9

"S

aft
a~I?.

St

'V.-'A.
-'a

.5

.4a'

a-

Vi

2

0
'Vt

-S
-5,

.4 '4.
Ow

I
0%~

0/

4k.

.4.
"'p
'a

-4

'V
-a'

'a.

'V
-'a
a.-.

a..

S
V

-D

'-I

'a;

S
-"Va

a'-

'-S

-S

S
1%

I!,

'S

70 CMU/SEI-88.TR-7

S

I'

V ~ 44,Q '%Zz~>~'~2".'SW 9' ~4:N t ;'"~ A 7 -~

Oh Appendix E: Activities and Plans (Global View)

tM

CZC
a. k

9 92

8 8

s-i

% . .

8cz
0 g

L I
C;aE

p m

. £

• CMU/SEI-88-TR-7 71

... .. -I,.nyw

0

II

II,

0

--- p

0

72 CMU/SEI-88-TR-7

0

P6 Ll;

I

Appendix F: An Illustration of Documenting an Instance
of the PM Experiment
A description of the architectural model is expected in Phase 4 of the methodology. To give
guidance to the experimenter in this phase, we present as an example the following description of
a typical project management tool, MacProjectT

M. The description includes an overview of the
functionality and user interface of MacProject, a completed Functionality Checklist, and an ex-
ample of the sequence of operations for one step of the experiment.

1. Overview
MacProject is a project management tool for the Apple Macintosh computer.5 With it, you can

visually schedule and track a project, its resources, and associated costs; update a project plan
with changes as they occur; and perform what-if analyses.
Functionality

To set up and monitor a project, MacProject offers a variety of representations or views:

*,Schedule Chart-Lays out a project, its tasks and milestones and their interdepen-
dencies, plus resource and time information about each task in a PERT chart
(network diagram) format. All projects begin as Schedule Charts, and most project

.,'. information is entered or modified here.

* Resource Timeline-For each resource, shows all tasks ordered by their start dates,
in the form of a GANTT style bar chart. You can add task information or set dates in
this view.

* Task Timeline-Shows all tasks in the order in which they occur, as a GANTT style
bar chart. You can add task information or set dates in this view.

- Task Cost Entry-Enters fixed costs and income.

- Resource Cost Entry-Enters unit costs for each resource.

* . Cash Flow Table-Shows cash on hand; both incremental and cumulative costs and
income are shown.

* Project Table-Shows all information about each task in a project: start and finish
dates, duration, cost, resources required.

Tasks are represented in the Schedule Chart by boxes. Each task has its own task information: a
name, a duration, one or more resources (equipment, personnel), and a cost. Potential over-
assignment of resources is not disallowed or checked. Costs may be fixed costs or ongoing
costs such as salaries. Seven types of information (dates, cost, etc.) and up to four resources
are available for displaying at the corners of each task box, but no more than four items of
information can be displayed at once. Besides tasks, MacProject lets you show milestones (key
events or progress markers), dependencies, and dates. You can set a date for a task or mile-
stone, or you can let the software calculate dates; the choices are earliest start, earliest finish,
latest start, latest finish. MacProject will calculate and display critical paths as well as slack time
for tasks not on the critical path.

The products needed by an activity and the products produced by an activity are not represented.

,Curk, tly. MacProject is not portable to other omputers.

CMU/SEI-88-TR-7 73

The arcs or links between tasks can only be annotated by manually attaching text, i.e., the soft-
ware does not associate text strings with links. So, for example, it would be awkward to model

0contract deliverables.

OR-R. The project duration scale is under user control. You can set the display of durations and dates
to be minute, hour, day, week, or month. The time interval for the Timeline charts and the Cash
Flow Table can likewise be set to any of the above, as well as to biweekly or quarterly.

MacProject has a calendar that can be edited to reflect working hours, holidays, etc. It is inte-
grated into the project management software so that scheduling, for example, will take into ac-
count those days that employees are unavailable. Validity checking on dates is automatic (for
example, if you set a date to a non-working day, the system will prompt with a warning message).
There is only one calendar, and calendar settings affect the entire project.

The temporal order of tasks is expressed through layout constraints (the left-to-right flow of
tasks). In this way MacProject prohibits loops, tasks connected in a circular fashion.
User Interface and Documentation

The Macintosh has a deservedly fine reputation for its graphical user interface. Such features as
icons and menus (which provide visual feedback), manipulation of images via the mouse, and
abundant on-line help and guidance make MacProject easy to learn and use. In MacProject, the
seven views of a project are linked and are kept in sync with each other. Switching between

.: .- views is as easy as selecting an alternate format from a menu. The usual Macintosh editingcommands are available in MacProject: select, cut and paste, a variety of fonts and styles for

text, commands for printing and viewing on the screen, etc. In the Macintosh style, many com-
mon commands have abbreviations (for example, control-T to show task information).

A section in the manual called "Steps in creating a project" describes, with simple text and
diagrams, how to set up a project on the computer.
Chapter 3 of the MacProject manual is called "Managing Projects." It offers iints and explana-
tions by answering common questions about project management such as:

o How can I finish the project sooner?

* Which tasks should I shorten?

* What if I lose or add staff or equipment?

e What if I change working hours or days?

e What if there's a deadline in the middle of the project?

For example, "How can I finish the project sooner?" suggests the following methods for trimming
a project's schedule: eliminate a task on the critical path, replan dependent tasks to be done in
parallel, overlap sequential jobs, decrease the duration of tasks on the critical path, or increase
the number of work days or work hours.

Limitations of MacProiect

* While MacProject is a very useful tool for the project manager, it has limitations. For very large
'."',and complex projects (hundreds of tasks), MacProject would probably not be suitable because of

speed and memory constraints of the Macintosh, and because of limits within MacProject on the
maximum number of tasks and resources. Also, MacProject is for project management in general

R.%, and is not specifically designed for controlling software projects.

Other limitations (capabilities that would be desirable and are lacking) include:i
* No automatic update to the schedule. Information regarding progress on the project

that is passed to the plan management facility necessitates manual updates.

74 CMU/SEI-88-TR-7

VN %4

* No support for multiple levels of detail in the Schedule Chart.

- No support for synchronizing plan development by multiple people or for merging
plans.

* No shared database.

, No formal support for distributed project planning.

Broadly speaking, MacProject is good for planning-in-the-small but not good for planning-in-the-
large, the "grand view" of a project at a global level.

i

U

I

CMU/SEI-88-TR-7 75

.
A:

AAA

I.

I

2. Functionality Checklist

, Step # Supported Observations

Proec Plan Management
Project plan creation
tailor planning support facilities Setup-6,Setup-7,Setup-8 N
link plans to baseline MPM-5 Y
develop W BS ... M PM -5 Y
estimate work cost MPM-5 Y
develop schedule .. MPM-5 Y
assign resources ... MPM-9,T1-1 Y
estimate project cost MPM-5 Y cost estimation is

unsophisticated
merge group plans into global plans MPM-7 N
generate plan document MPM-5,MPM-8 Y

Project monitoring
report on actual progress MPM-10,MPM-13 Y
analyze progress against schedule MPM-10,MPM-13 Y mostly manual
compare actuals to estimates MPM-10,MPM-13 Y mostly manual
analyze resource utilization MPM-1O,MPM-13 Y limited
generate summary reports MPM-1O,MPM-13 Y

Project plan revision
baseline the plans M PM -11 N
perform what-if analysis MPM-1 1 Y
handle schedule slippage MPM-1 I Y
handle adjustment in working hours MPM-1 I Y
handle personnel changes MPM-11 Y
handle changes in WBS MPM-12 Y
handle changes to project structure MPM-12 Y
handle changes in deliverables MPM-12 N
adjust costs based on actuals MPM-12 Y
handle computing resource changes . MPM-12 N
generate reports.............. M PM -11 Y

," Plan Instantlation
P rolect installation N

" Reporting mechanism installation. " N

" Reflecting modifications to plan. N

Project Execution
" Communication and coordination N

Information access and control N

Product Management

Traceability of project documentation N

- Control of change requests N

Q ua lity control N

Product Release Control N

76 CMU/SEI-88-TR-7

' .-

I

3. Sequence of Operations

The following is an example of the responses the experimenter might give in step MPM-5 of the
,0 experiment when evaluating MacProject.

5. Turn remaining recommendations into an initial global plan.

PERFORMANCE MEASUREMENT: For each of the following sub-steps, record the responsiveness of
4the tool or facility used in plan development. Record the storage cost of each object in the global

plan: WBS, schedule, PERT chart, cost estimate, etc. Note how long a critical path analysis

takes as an indication of interactiveness.

_ .' In MacProject, the various views of a project are kept in a single document. The size of this document is 3K
bytes. Entering data into any view or updating data is rapid. Changing views, by selecting a new view with
the mouse, takes only a few seconds.

a. define work packages in the initial WBS for three maintenance teams, a documentation
group, and a Q/A group.

. When you begin a new MacProject document, the default view is Schedule Chart. Enter each task by

I drawing a box on the screen with the mouse and typing a name for the task inside the box. Connect the
task boxes. Change the starting, ending, and reporting tasks to milestones.

b. estimate man-days, number of resources (persons), number of days, number of changed
lines of code.

Still in the Schedule Chart. For each task in turn, select "Show Task Information" and enter the number'of days and then the persons (role) assigned to that task. Select "Show Dates" and set to ON the display
of duration, a date, and a resource.

c. perform a cost estimation and set up a budget for the project as well as for teams.

Enter salaries for the technical staff into the Resource Cost table, and fixed costs into Task Cost table.
Expenditures will show up as costs in tho Cash Flow table and the right-hand column will give cumula-
tive costs.

There is no macro-level tool for cost estimation, and support for budgeting and forecasting is minimal.

d. work out an initial global schedule.

The schedule, in the form of a PERT chart, is maintained by MacProject as tasks are entered and linked
I into the network. MacProject calculated the critical path in approximately one second.

e. generate a document containing the initial global plan. If possible, generate different views

of the plan information, e.g., PERT chart, work package listing, resource chart.

For each of the seven representations available, (i) change the display to that view and 2) select "Prini"

4 which produces a hardcopy listing of that view of the plan.

- f. retain a version of the plan as part of the project hstory

Get an empty folder, name it, and drag the MacProject document into it

Archiving and CM are not available in MacProiect

CMU/SEI-88-TR-7 77

g i
* '.*I.% ** 4.. 4

.". - .

.zz.
-4

4--

4-,

'.4'

- 4.,
'4

-4.,

4%,
4-"

4.4.

* 4,4.4~

4)4

U
'*4>

4~444

S

4.-

'4

4'

*
'4-.

-4

-P.-

.44

0

0

0

78 CMU/SEI-88-TR-7

0

1*

* 4.- ...-.. - .4 ...-. .4..-- 4..44...'4. ~.....'.4*-~'4~'**4
-. 4... 4 . .4

~...... 4.44 4 .4 ~'44~~ *. .4.4 4....,. ~ '.44.4'4*4 *.4**~.44~.44.4~44*~

UNLIMITED. [rNCf.AqT FFn
* lSECuRITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

.e UNCLASSIFIED NONE
2s SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b OECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

, ." A PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-7 ESD-TR-88-008

6a NAMtC Of PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if opphcable,,

SOFTWARE ENGINEERING INSTITUTE SEI SEI JOINT PROGRAM OFFICE
6c, ADDRESS (CI. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)
CARNEGIE MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

BS NAME OF FUNDING/SPONSORING 18b. OFFICE SYM8OL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
S -- ORGANIZATION (it applicable)

SEI JOINT PROGRAM OFFICE SEI JPO F1962885C0003
8C ADDRESS (City. State and ZIP Code) 10 SOURCE OF FUNDING NOS

" .' CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

SOFTWARE ENGINEERING INSTITUTE JPD ELEMENT NO NO NO NO

PITTSBURGH. PA 15213 N/A N/A N/A
I1 TITLE (Inciude Securty C aOS jCo,)

. " : THE PROJECT MANAGEMENT EXPERIMENT
12 PERSONAL AUTHOR(S)

PETER FELLER, ROGER SMEATON
13s. TYPE OF REPORT 13t) TIME COVERED 14 D T E OF: REPORT fl',. Mo . DaN, 15PG CON
FINAL FROM TO JULY 1988 84

16 SUPPLEMENTARY NOTATION

17 COSATI CO ES 18 SUBJECT TERMS iContI ," on flLCr$, If ,,CcSir- Q ad d,,-t~f b) block lrrIlb r,

FIE L SUB PROJECT MANAGEMENT, ADA, ADA PROGRAMMING ENVIRONMENTS

9 ABST RACT Wr rflne on I'rSU I neces an and iden tif b block flu tbg',

THIS REPORT COVERS A PROJECT MANAGEMENT (PM) EXPERIMENT, ONE OF SIX EXPERIMENTS
THAT EXAMINE DIFFERENT FUNCTIONAL AREAS OF ADA PROGRAMMING ENVIRONMENTS. THE
PM EXPERIMENT WAS DESIGNED AS PART OF THE EVALUATION OF ADA ENVIRONMENTS PROJECT.
THIS REPORT DESCRIBES THE ENVIRONMENT-INDEPENDENT PART OF THE EXPERIMENT: THE
ACTIVITIES COVERING THE FUNCTIONAL AREA, THE EVALUATION CRITERIA, AND AN EXPERIMENT
SCENARIO TO BE PERFORMED ON DIFFERENT ENVIRONMENTS. THE EXPERIMENT AS IT STANDS HAS
BEEN VALIDATED THROUGH INTERNAL AND EXTERNAL REVIEW AND THROUGH A-LICATION TO

, SEVERAL ENVIRONMENTS THAT SUPPORT PROJECT MANAGEMENT.

20 D1ST RIBUTIO'"'AVAILABILIT OF ABSTRACT 21 ABSTRACI SECURITY CLASSIFICATION

*UNCLASSIFIEP ,;LINt ITFC 0 SAME AS RPT F, DIC USERS V L"CLASSIV1 ED, L'NLIMI1EI)
22s NAME OF RFSP O N 5 t INGIVICS 2t. LEP I NCJMI(I i 22. oFFCt SvMBC

KAPi- S 1 ; E) i , "I 55] .Jj

DD FORM 1473, 83 APR EDITION OF 1 jAN 73 . K l11 I .E.D AS S 1 1 i

I AS,,,7 ,...." " , . - --

